The
We describe a method of closed, unlocked nailing for femoral fractures using ultrasound instead of an
Introduction:
Background. Paediatric pelvic corrective surgery for developmentally dysplastic hips requires that the acetabular roof is angulated to improve stability and reduce morbidity. Accurate bony positioning is vital in a weight-bearing joint as is appropriate placement of metalwork without intrusion into the joint. This can often be difficult to visualise using conventional
Aim: To evaluate intraoperative use of the Mini C-Arm compared with standard X-ray image intensification. Method: Radiation exposure data was collected for patients undergoing orthopaedic operative procedures. Data was collected over a 3 month period using a standard Siemens Siremobil 2000 X-Ray
Introduction. The Patient Archiving and Communication System (PACS) has revolutionised the way that radiographs are stored and viewed in orthopaedic surgery. A recent advance has been the ability to upload images directly from the
Introduction: Radiation dose exposure to patients in a main X-ray department in a hospital is well documented and controlled. Few studies report the radiation exposure to patients undergoing spinal surgery received from an
We wish to draw attention to the potential dangers of using the C-arm radiolucent plate of an
The International Commission on Radiological Protection has established standards for radiation protection. This study aims to determine actual and perceived radiation dose and audit safe practice when using image-intensifiers in theatre. Between September 2012 and March 2013, 50 surgeons were surveyed during 39 procedures. Information collected by radiographers included the number of images the surgeons thought they used, actual number used, dose, screening time, number of people scrubbed, wearing thyroid collars and standing within 1m of the image-intensifier when in use. The primary surgeon was more likely to estimate the number of images used correctly compared to the assistant. Supervising consultants were most accurate, followed by registrars as primary surgeons, consultants as primary surgeons then assisting registrars, and lastly SHOs. Most surgeons underestimated the number of images used. 87.5% of scrubbed staff were standing within 1m of the image-intensifier during screening and 36.5% were wearing thyroid protection. Three surgeons stated they were not wearing collars as they were unavailable. We conclude that surgeons have a reasonable estimation of the x-rays used but are not undertaking simple steps to protect themselves from radiation. We plan to initiate an education program within the department and have ordered new, lightweight thyroid collars.
The use of fluoroscopy in orthopaedic surgery creates risk of radiation exposure to surgeons. Appropriate personal protective equipment (PPE) can help mitigate this. The primary aim of this study was to assess if current radiation protection in orthopaedic trauma is safe. The secondary aims were to describe normative data of radiation exposure during common orthopaedic procedures, evaluate ways to improve any deficits in protection, and validate the use of electronic personal dosimeters (EPDs) in assessing radiation dose in orthopaedic surgery. Radiation exposure to surgeons during common orthopaedic trauma operations was prospectively assessed using EPDs and thermoluminescent dosimeters (TLDs). Normative data for each operation type were calculated and compared to recommended guidelines.Aims
Methods
Introduction. The vast majority of orthopaedic surgeons use C-arm fluoroscopy in the operating theatre when building a circular external fixator. In the absence of previous research in this area, we hypothesised that the surgeon who builds a circular external fixator is exposed to a greater amount of radiation purely as a result of the presence of the metallic fixator in the x-ray beam. The aim of our study therefore was to investigate how the presence of a circular external fixator affects the radiation dose to the surgeon and the surgical assistant. Materials & Methods. A simulated environment was created using a radiolucent operating table, an acrylic lower limb phantom (below knee segment), various configurations of metalic circular external fixation, and a standard size C-arm
Intra-articular punctures and injections are performed routinely on patients with injuries to and chronic diseases of joints, to release an effusion or haemarthrosis, or to inject drugs. The purpose of this study was to investigate the accuracy of placement of the needle during this procedure. A total of 76 cadaver acromioclavicular joints were injected with a solution containing methyl blue and subsequently dissected to distinguish intra- from peri-articular injection. In order to assess the importance of experience in achieving accurate placement, half of the injections were performed by an inexperienced resident and half by a skilled specialist. The specialist injected a further 20 cadaver acromioclavicular joints with the aid of an
Surgical treatment of pelvic injuries is one of the most challenging tasks in trauma surgery. Intra-operative two-dimensional imaging technology can often not cope with the complex requirements of the three-dimensional anatomy of the pelvis. A registration, which is difficult to achieve with minimal invasive techniques, is obligatory for the CT-based navigation. Changes in the reduction can only be visualized inadequately. The intra-operative imaging after completed osteosynthesis has significantly enhanced since the introduction of three-dimensional image amplifiers. The three-dimensional data can be used directly for the visualization of the osteosynthesis material by linking it to a navigation system. Since January 2001 the Trauma Center Ludwig-shafen has the ability to perform the registration-free three-dimensional navigation by linking the 3D
Background. The use of a knotless TightRope for the stabilisation of a syndesmotic injury is a well-recognised mode of fixation. It has been described that the device can be inserted using a “closed” technique. This presents a risk of saphenous nerve entrapment and post-operative pain. Aim. We aimed to establish the actual risk of injury to the Saphenous Nerve using a “closed” technique for the insertion of a TightRope. Method. 20 TightRopes were inserted into Fresh Frozen Cadavers. This was done using the senior authors preferred technique of divergent tightropes with the distal implant directed slightly anterior to the fibula-tibia axis and the proximal implant slightly posterior in order to simulate the greatest risk to the nerve. This was done under