Background. Following an anterior cruciate ligament (ACL) injury, the affected knee is known to experience bone loss and is at significant risk of becoming osteoporotic. Surgical reconstruction is performed to attempt to restore the function of the knee and theoretically restore this bone density loss. Cross-sectional analysis of the proximal tibia using peripheral quantitative computed tomography (pQCT) enables localised analysis of bone mineral density (BMD) changes. The aim of this study was to establish the pattern of bone density changes in the tibia pre- and post- ACL reconstruction using pQCT
Introduction and Objective. Type 2 diabetes mellitus (T2DM), and the often concurrent obesity, causes metabolic changes that affect many organs and tissues, including bone. Despite a normal or even higher bone mineral density (BMD), T2DM has often been associated with a higher fracture risk, indicating a compromised bone quality. In this work, we use a novel congenic leptin receptor-deficient BioBreeding Diabetes Resistant rat (BBDR.cg.lepr.cp) to investigate the impact of T2DM and obesity on bone morphology and architecture at the microscale. Materials and Methods. Two different anatomical locations, i.e., femur and cranium, were studied combining micro-computed X-ray tomography (micro-CT) with scanning electron microscopy (SEM). Micro-CT data were examined using advanced
The most important outcome predictor of Legg-Calvé-Perthes disease (LCPD) is the shape of the healed femoral head. However, the deformity of the femoral head is currently evaluated by non-reproducible, categorical, and qualitative classifications. In this regard, recent advances in computer vision might provide the opportunity to automatically detect and delineate the outlines of bone in radiographic images for calculating a continuous measure of femoral head deformity. This study aimed to construct a pipeline for accurately detecting and delineating the proximal femur in radiographs of LCPD patients employing existing algorithms. To detect the proximal femur, the pretrained stateof-the-art object detection model, YOLOv5, was trained on 1580 manually annotated radiographs, validated on 338 radiographs, and tested on 338 radiographs. Additionally, 200 radiographs of shoulders and chests were added to the dataset to make the model more robust to false positives and increase generalizability. The convolutional neural network architecture, U-Net, was then employed to segment the detected proximal femur. The network was trained on 80 manually annotated radiographs using real-time data augmentation to increase the number of training images and enhance the generalizability of the segmentation model. The network was validated on 60 radiographs and tested on 60 radiographs. The object detection model achieved a mean Average Precision (mAP) of 0.998 using an Intersection over Union (IoU) threshold of 0.5, and a mAP of 0.712 over IoU thresholds of 0.5 to 0.95 on the test set. The segmentation model achieved an accuracy score of 0.912, a Dice Coefficient of 0.937, and a binary IoU score of 0.854 on the test set. The proposed fully automatic proximal femur detection and segmentation system provides a promising method for accurately detecting and delineating the proximal femoral bone contour in radiographic images, which is necessary for further
Anterior vertebral body tethering (AVBT) is a growth modulating procedure used to manage idiopathic scoliosis by applying a flexible tether to the convex surface of the spine in skeletally immature patients. The purpose of this study is to determine the preliminary clinical outcomes for an adolescent patient cohort. 18 patients with scoliosis were selected using a narrow selection criteria to undergo AVBT. Of this cohort, 11 had reached a minimum follow up of 2 years, 4 had reached 18 months, and 3 had reached 6 months. These patients all demonstrated a primary thoracic deformity that was too severe for bracing, were skeletally immature, and were analysed in this preliminary study of coronal plane deformity correction. Using open-source
Abstract. Objective. The preparation of host degenerate cartilage for repair typically requires cutting and/or scraping to remove the damaged tissue. This can lead to mechanical injury and cartilage cell (chondrocytes) death, potentially limiting the integration of repair material. This study evaluated cell death at the site of cutting injury and determined whether raising the osmotic pressure (hyper-osmolarity) prior to injury could be chondroprotective. Methods. Ex vivo human femoral head cartilage was obtained from 13 patients (5 males and 8 females: 71.8 years old) with Ethical Permission and Patient consent. Cartilage wells were created using 3 or 5mm biopsy punches. Cell death at the wounded edge of the host cartilage and the edge of the extracted explants were assessed by quantifying the percentage of cell death (PCD) and measuring the width of the cell death zone at identified regions of interest (ROI) using the confocal laser scanning microscopy and
Introduction and Objective. Chronic tendinopathy is a multifactorial disease and a common problem in both, athletes and the general population. Mechanical overload and in addition old age, adiposity, and metabolic disorders are among the risk factors for chronic tendinopathy but their role in the pathogenesis is not yet unequivocally clarified. Materials and Methods. Achilles tendons of young (10 weeks) and old (100 weeks) female rats bred for high (HCR) and low (LCR) intrinsic aerobic exercise capacity were investigated. Both Achilles tendons of 28 rats were included and groups were young HCR, young LCR, old HCR, and old LCR (n = 7 tendons per group/method). In this rat model, genetically determined aerobic exercise capacity is associated with a certain phenotype as LCR show higher body weight and metabolic dysfunctions in comparison to HCR. Quantitative real-time PCR (qPCR) was used to evaluate alterations in gene expression. For histological
Joint surface restoration of deep osteochondral defects represents a significant unmet clinical need. Moreover, untreated lesions lead to a high rate of osteoarthritis. The current strategies to repair deep osteochondral defects such as osteochondral grafting or sandwich strategies combining bone autografts with ACI/MACI fail to generate long-lasting osteochondral interfaces. Herein, we investigated the capacity of juvenile Osteochondral Grafts (OCGs) to repair osteochondral defects in skeletally mature animals. With this regenerative model in view, we set up a new biological, bilayered, and scaffold-free Tissue Engineered (TE) construct for the repair of the osteochondral unit of the knee. Skeletally immature (5 weeks old) and mature (11 weeks old) Lewis rats were used. Cylindrical OCGs were excised from the intercondylar groove of the knee of skeletally immature rats and transplanted into osteochondral defects created in skeletally mature rats. To create bilayered TE constructs, micromasses of human periosteum-derived progenitor cells (hPDCs) and human articular chondrocytes (hACs) were produced in vitro using chemically defined medium formulations. These constructs were subsequently implanted orthotopically in vivo in nude rats. At 4 and 16 weeks after surgery, the knees were collected and processed for subsequent 3D
Osteocytes are terminally differentiated long-lived cells and account for greater than 95% of the bone cell population. It has been established that osteocytes are connected through their highly developed dendritic network, which is necessary for the maintenance of optimal bone homeostasis. However, little is known on how osteocytes use the network to coordinate their cellular function and communication that requires energy and protein turnover. Here using super-resolution confocal imaging on both live and fixed osteocytes, we demonstrated conclusively that mitochondria are widely distributed and dynamically shared between osteocytes. Using confocal live cell
Objectives. Implant-related infection is one of the most devastating complications in orthopaedic surgery. Many surface and/or material modifications have been developed in order to minimise this problem; however, most of the in vitro studies did not evaluate bacterial adhesion in the presence of eukaryotic cells, as stated by the ‘race for the surface’ theory. Moreover, the adherence of numerous clinical strains with different initial concentrations has not been studied. Methods. We describe a method for the study of bacterial adherence in the presence of preosteoblastic cells. For this purpose we mixed different concentrations of bacterial cells from collection and clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells, and analysed the minimal concentration of bacteria able to colonise the surface of the material with
Poly-ether-ether-ketone (PEEK) is a biomaterial commonly used for spinal implants and screws. It is often desirable for orthopaedic implants to osseointegrate, but as PEEK is biologically inert this will not occur. The aim of this project was to determine if injection mould nanopatterning can be used to create a make PEEK bioactive and stimulate osteogenesis in vitro. PEEK substrates were fabricated by injection mould nanopatterning to produce near-square (NSQ) nanopatterned PEEK and planar (FLAT) PEEK samples. Atomic force microscopy (AFM) and scanning electron microscopy were used to characterize the surface topography. Human bone marrow stromal cells (hBMSCs) were isolated from patients undergoing primary hip replacement operations and seeded onto the PEEK substrates. After 6 weeks the cells were stained using alizarin red S (ARS) stain (to detect calcium) and the von Kossa technique (to detect phosphate) and analyzed using CellProfiler
Summary Statement. The peripheral neuronal phenotype is significantly altered in rotator cuff tendinopathy (RCT) with a clear upregulation of the Glutaminergic system being present in disease. Introduction. Shoulder pain is the third most frequent cause of chronic musculoskeletal pain in the community and is usually caused by rotator cuff tendinopathy (RCT). The central and peripheral nervous system play an important role in both tissue homoeostasis and tendon healing. The Glutaminergic system is of key importance in driving the peripheral and central neuronal changes which increase the body's sensitivity to pain (1, 2). No study to date has investigated the role of the glutaminergic system in human RCT. We hypothesised that the peripheral neuronal phenotype would be altered in RCT, and would vary according to disease stage as measured by size of tear. The term ‘peripheral neuronal phenotype’ is used to refer to refer to specific characteristics of the peripheral nervous system, neuronal mediators and the receptors for these mediators in peripheral tissue. Methods. Rotator cuff tendon specimens were obtained from 64 patients undergoing the surgical repair of rotator cuff tears. Control supraspinatus tendon was obtained from 10 patients undergoing surgery for anterior instability using an ultrasound guided biopsy technique. Patients with rotator cuff tears were divided into 2 groups: the small/medium group (≤ 3cm size) and the large/massive group (>3cm size). The tendon tissue was histologically stained using Haematoxylin and Eosin, and immunohistochemically stained with primary antibodies visualised using 3, 3′-diaminobenzidine (DAB).
Introduction. Lesion location and volume are critical factors to select patients with osteonecrosis for whom resurfacing arthroplasty is appropriate. However, no reliable surgical planning system which can assess relationship between necrotic lesions and the femoral component has been established. We have developed a 3D-MRI-based planning system for resurfacing arthroplasty. The purpose of the present study was to evaluate its feasibility. Methods. The subjects included five patients with osteonecrosis of ARCO stage 3 or 4 who had undergone resurfacing THA at our institute. All patients had an MRI before surgery using 3D-SPGR sequences and fat suppression 3D-SPGR sequencea. In cases where it was difficult to distinguish bone marrow edema and reparative zone on 3D-SPGR images, fat suppression 3D-SPGR sequences were used. Simulation of resurfacing arthroplasty was performed on
Finite element models of the musculoskeletal system have the possibility of describing the in vivo situation to a greater extent than a single in vitro experimental study ever could. However these models and the assumptions made must be validated before they can be considered truly useful. The object of this study was to validate, using digital image correlation (DIC) and strain gauging, a novel free boundary condition finite element model of the femur. The femur was treated as a complete musculoskeletal construct without specific fixed restraint acting on the bone. Spring elements with defined force-displacement relationships were used to characterize all muscles and ligaments crossing the hip and knee joints. This model was subjected to a loading condition representing single leg stance. From the developed model muscle, ligament and joint reaction forces were extracted as well as displacement and strain plots. The muscles with the most influence were selected to be represented in the simplified experimental setup. To validate the finite element model a balanced in vitro experimental set up was designed. The femur was loaded proximally through a construct representative of the pelvis and balanced distally on a construct representing the tibio-femoral joint. Muscles were represented using a cabling system with glued attachments. Strains were recorded using DIC and strain gauging. DIC is an
Summary. Increased lateral ulnotrochlear joint space due to improper sizing in radial head arthroplasty may result in medial collateral ligament laxity, leading to increased osteophytes and arthritis. Introduction. Radial head (RH) arthroplasty is a common response to comminuted RH fractures. Typical complications include improper sizing, leading to changes in joint kinematics. Evidence of these changes should be visible through fluoroscopic images of affected joints. The two examined changes in this study are the ulnar deviation from distal radial translation (DRT), and the widening of the lateral ulnotrochlear joint space (LUT). Methods. Eight fresh-frozen cadaver arms were used. Initial images were taken with the native RH intact. The Kocher approach exposed the radiocapitellar (RC) joint capsule, preserving all ligaments. The RH was excised and Integra Katalyst CoCr (Plainsboro, NJ) telescoping, bipolar, RH inserted. Images were taken with implant sizings: −2mm, 0mm, +2mm, and +4mm, (from native) using 1mm washers preventing implant bipolarity. AP fluoroscopic images of the elbow were taken at full extension. Joint spaces were measured using
Summary Statement. O-terminated nanocrystalline diamond films proposed as bone implant coatings are promising for adhesion and growth of osteoblasts, as well as for osteogenic cell differentiation and extracellular matrix production. Nanocrystalline diamond (NCD) films are promising materials for tissue engineering, especially for bone implants coating, due to their biocompatibility, chemical resistance and mechanical hardness. Nanostructure and morphology of the NCD films can efficiently mimic the properties of natural tissues, and thus they support the cell adhesion, proliferation and differentiation. In addition, the NCD wettability can be tailored by grafting specific atoms and functional chemical groups (e.g., oxygen, hydrogen, amine groups, etc.) which influence the adsorption and final geometry of proteins, and thus the behaviour of cultivated cells. Therefore, the NCD films are proposed as multifunctional materials for fundamental studies on the growth and adhesion of osteoblasts on bone implants, which is particularly our interest. The NCD films used in this study were grown on silicon substrates by microwave plasma-enhanced chemical vapor deposition. The quality of the grown NCD films was investigated by Raman spectroscopy, scanning electron microscopy and atomic force microscopy. In order to control the hydrophobic or hydrophilic character, the NCD film surfaces were grafted by hydrogen (H-termination) or oxygen (O-termination) atoms. The influence of surface termination on the surface wettability (wetting contact angle) was characterised by reflection goniometry using droplet of deionised water. The primary human osteoblasts and osteoblast-like Saos-2 cells were used for biological studies on H- and O-terminated NCD films. The cell adhesion and spreading was analysed by the visualisation of focal adhesion proteins (talin, paxillin) and actin fibers. Expression of markers of osteogenic cell differentiation (alkaline phosphatase, osteocalcin, collagen I) was monitored by the reverse transcription and Real-time PCR method, and also by immunostaining of expressed proteins and
Porous collagen-glycosaminoglycan (Col/GAG) scaffolds have previously been used clinically as regeneration templates for peripheral nerves and skin. [1]. For defects involving even minimal load-bearing applications however, these scaffolds do not possess the required stiffness. Calcium phosphates (CaPs) are often used as bone-graft substitutes due to their biocompatibility and direct bone-bonding ability. While CaPs have sufficient stiffness for bone-defect applications, unlike Col/GAG they lack elasticity and are very brittle. Combining these two materials produces a composite with enhanced material properties and chemical similarity to natural bone. The addition of CaP nanocrystallites into the Col/GAG matrix produces a 3-dimensional structure that maintains its structural integrity even when wet. In this study, the in vivo performance of mineralised Col/GAG composites was evaluated by implantation into a six-week ovine bone-defect model. Four different materials were implanted; Col/GAG alone, Col/GAG with octacalcium phosphate, Col/GAG with hydroxyapatite and Col/GAG with brushite. Implants with a diameter of 9mm and length of 9mm, were placed bilaterally into the distal femoral condyle of the hind legs of thirteen sheep. This site was selected due to the large volume of load-bearing cancellous bone. Cancellous autograft was harvested from the tibial tuberosity and placed in the defect sites of two sheep as a positive control. All animals were sacrificed after 6 weeks and tissue containing the implants was prepared for histological evaluation.
Metal and their alloys have been widely used as implantable materials and prostheses in orthopaedic surgery. However, concerns exist as the metal nanoparticles released from wear of the prostheses cause clinical complications and in some cases result in catastrophic host tissue responses. The mechanism of nanotoxicity and cellular responses to wear metal nanoparticles are largely unknown. The aim of this study was to characterise macrophage phagocytosed cobalt/chromium metal nanoparticles both in vitro and in vivo, and investigate the consequent cytotoxicity. Two types of macrophage cell lines, murine RAW246.7 and human THP-1s were used for in vitro study, and tissues retrieved from pseudotumour patients caused by metal-on-metal hip resurfacing (MoMHR) were used for ex vivo observation. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) in combination with backscatter, energy-disperse X-ray spectrometer (EDS), focused ion beam (FIB) were employed to characterise phagocytosed metal nanoparticles. Alamar blue assay, cell viability assays in addition to confocal microscopy in combination with
Long term, secondary implant fixation of Total Disc Replacements (TDR) can be enhanced by hydroxyapatite or similar osseo-conductive coatings. These coatings are routinely applied to metal substrates. The objective of this in vivo study was to investigate the early stability and subsequent bone response adjacent to an all polymer TDR implant over a period of six months in an animal model. Six skeletally mature male baboons (Papio annubis) were followed for a period of 6 months. Using a transperitoneal exposure, a custom-sized Cadisc L device was implanted into the disc space one level above the lumbo-sacral junction in all subjects. Radiographs of the lumbar spine were acquired prior to surgery, and post-operatively at intervals up to 6 months to assess implant stability. Flourochrome markers (which contain molecules that bind to mineralization fronts) were injected at specified intervals in order to investigate bone remodeling with time. Animals were humanely euthanized six months after index surgery. Test and control specimens were retrieved, fixed and subjected to histological processing to assess the bone-implant-bone interface. Fluorescence microscopy and confocal scanning laser microscopy were utilized with BioQuant
Introduction. Histology remains the gold standard in morphometric and pathological analyses of osteochondral tissues in human and experimental bone and joint disease. However, histological tissue processing is laborious, destructive and only provides a two-dimensional image in a single anatomical plane. Micro computed tomography (μCT) enables non-destructive three-dimensional visualization and morphometry of mineralized tissues and, with the aid of contrast agents, soft tissues. In this study, we evaluated phosphotungstic acid-enhanced (PTA) μCT to visualize joint pathology in spine osteoarthritis. Methods. Lumbar facet joint specimens were acquired from six patients (5 female, age range 31–78) undergoing decompression surgery. Fresh osteochondral specimens were immediately fixed in formalin and scanned in a benchtop μCT scanner (65 kV, 153 mA, 25 μm resolution). Subsequently, samples were completely decalcified in 5% formic acid, equilibrated in 70% ethanol and stained up to ten days in 1% PTA (w/v) in 70% ethanol. PTA-stained specimens were scanned at 70 kV, 140 mA, 15 μm resolution. Depth-dependent analysis of X-ray attenuation in cartilage tissues was performed using ImageJ. Bone structural parameters of undecalcified and PTA-stained specimens were determined using CT Analyser and methods were compared using correlation and Bland-Altman analysis. Results. The maximal penetration depth of PTA in decalcified facet joint was 5 mm. Bone tissue showed strong and uniformly distributed X-ray attenuation, while mild to moderate and differentially distributed attenuation was observed in articular cartilage and subchondral marrow spaces. Measurements of bone volume (r=0.90, p=0.01) and bone surface (r=0.95, p=0.004) were strongly correlated between undecalcified and PTA-stained samples. Compared with PTA-stained samples, measurements in undecalcified specimens were consistently higher (∼14%). PTA-enhanced μCT visualization of cartilage tissues enabled the identification of individual chondrocytes and their pericellular microenvironment (chondrons). Owing to loss of collagen lower X-ray attenuation was observed in the middle and deep cartilage layers at the central, but not peripheral, regions of the degenerated facet joint specimens. Depth-dependent analysis of PTA-staining intensity suggested that the extent of collagen loss in articular cartilage might correlate with the thickness of the subchondral cortical plate. Conclusion. PTA-enhanced μCT is a low-cost, non-toxic and highly feasible method for ex vivo 3D-visualization of osteochondral pathology in human osteoarthritis. The method enables bone morphometric analysis, as well as collagen distribution in all anatomical planes. Contrast enhanced μCT has several applications in bone and osteoarthritis research including 3D histopathological grading, tissue stratification, and
Introduction. This study investigated the binding agent Calcium/Sodium Alginate fibre gel and the addition of autogenic bone marrow aspirate (BMA) on bone growth into a porous HA scaffold implanted in an ovine femoral condyle critical-sized defect. Our hypothesis was that Alginate fibre gel would have no negative effect on bone formation and osteoconduction within the scaffold and that BMA would augment the incorporation of the graft with the surrounding bone at 6 and 12 weeks post implantation. Methods. 24, 8mm x 15mm defects were filled with either porous HA granules, porous HA granules + Alginate fibre gel (HA putty) or porous HA granules + Alginate fibre gel + BMA (HA putty +BMA) and remained in vivo for 6 and 12 weeks (n=4). 1ml of bone marrow aspirate per cm3 of graft was used.