Advertisement for orthosearch.org.uk
Results 1 - 20 of 83
Results per page:
Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_4 | Pages 25 - 25
1 Feb 2014
Lee KC Patel S Sell P
Full Access

Introduction. Yellow flags are psychosocial indicators which are associated with a greater likelihood of progression to persistent pain and disability and are referred to as obstacles to recovery. It is not known how effective clinicians are in detecting them. Our objective was to determine if clinicians were able to detect them in secondary care. Methods. 111 new referrals in a specialist spine clinic completed the Oswestry Disability Index (ODI) and a range of other validated questionnaires including the yellow flag questionnaire adapted from the psychosocial flags framework. Clinicians blinded to the patient data completed a standardized form to determine which and how many yellow flags they had identified. Results. The average number of yellow flags per patient was 5 (range: 0–9). Clinician sensitivity in detecting yellow flags was poor, identifying only 2 on average. The most common yellow flag reported by patients was fear of movement or injury (88%), and this was also the yellow flag most frequently missed by clinicians, being identified correctly in only 45% of patients. The most commonly misidentified was patient uncertainty, in 28% of patients. Patients who reported more yellow flags were more likely to score higher on their ODI (p<0.01), Modified somatic perception score (p<0.01) and Modified Zung Depression Index (p<0.01). They also had poorer Low Back Outcome Scores (LBOS) (p<0.01). Conclusion. Clinician sensitivity in detecting yellow flags is poor. Improved identification of obstacles to recovery may improve outcomes. Clinicians may improve detection of these obstacles by having a simple set of questions completed by the patient


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_I | Pages 32 - 32
1 Jan 2012
Myburgh C Lauridsen H Holsgaard-Larsen A Hartvigsen J
Full Access

A clinical diagnosis of Myofascial Pain Syndrome (MPS) requires manual palpation for the identification of at least one clinically relevant trigger point (TP). However, few comparable, high quality studies exist regarding the robustness of TP examination. Our aim was to determine the inter-observer agreement of TP examination among four examiners and whether reproducibility is influenced by examiner clinical experience. Two experienced and two inexperienced clinicians each performed a standardized palpation of the upper Trapezius musculature. Each observer was asked to judge the presents/absence of clinically relevant TP(s) using clinician global assessment (GA). A random case mix of 81 female participants was examined, 14 being asymptomatic and the remainder suffering from neck/shoulder pain. Examiners received psychomotor training and video analysis feedback provided prior to and during the study in order to improve protocol standardization. Kappa co-efficients were calculated for all possible examiner pairings. Good agreement was noted between the experienced pairing (κ= 0.63). Moderate levels of agreement were observed among the two mixed pairings (κ=0.35 and 0.47 respectively). However, poor agreement was observed for the inexperienced pairing (κ=0.22). Inter-observer agreement was not stable with the experienced pairing in particular, exhibiting a sharp decline in agreement during the latter portion of the study. Identification of clinically relevant TPs of the upper Trapezius musculature is a reproducible procedure when performed by two experienced clinicians. However, an experienced-inexperienced observer pairing can yield acceptable levels of agreement. A protracted period of data collection may be detrimental to inter-observer agreement


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 26 - 26
1 Feb 2016
Stynes S Konstantinou K Ogollah R Hay E Dunn K
Full Access

Background:. Identification of nerve root involvement (NRI) in patients with low back-related leg pain (LBLP) can be challenging. Diagnostic models have mainly been developed in secondary care with conflicting reference standards and predictor selection. This study aims to ascertain which cluster of items from clinical assessment best identify NRI in primary care consulters with LBLP. Methods:. Cross-sectional data on 395 LBLP consulters were analysed. Potential NRI indicators were seven clinical assessment items. Two definitions of NRI formed the reference standards: (i) high confidence (≥80%) NRI clinical diagnosis (ii) high confidence (≥80%) NRI clinical diagnosis with confirmatory magnetic resonance imaging (MRI) findings. Multivariable logistic regression models were constructed and compared for both reference standards. Model performances were summarised using the Hosmer-Lemeshow statistic and area under the curve (AUC). Bootstrapping assessed internal validity. Results:. NRI clinical diagnosis model retained five items. The model with MRI in the reference standard retained six items. Four items remained in both models: below knee pain, leg pain worse than back pain, positive neural tension tests, neurological deficit (myotome, reflex or sensory). NRI clinical diagnosis model was well calibrated (p=0.17) and discrimination was AUC 0.96 (95%CI: 0.93, 0.98). Performance measures for clinical diagnosis plus confirmatory MRI model showed good discrimination (AUC 0.83, 95% CI: 0.78, 0.86) but poor calibration (p=0.01). Bootstrapping revealed minimal overfitting in both models. Conclusion:. A cluster of items identified NRI in LBLP consulters. These criteria could be used clinically and in research to improve accuracy of identification and homogeneity of this subgroup of low back pain patients


The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1533 - 1537
1 Nov 2013
Farshad M Aichmair A Hughes AP Herzog RJ Farshad-Amacker NA

The purpose of this study was to devise a simple but reliable radiological method of identifying a lumbosacral transitional vertebra (LSTV) with a solid bony bridge on sagittal MRI, which could then be applied to a lateral radiograph.

The vertical mid-vertebral angle (VMVA) and the vertical anterior vertebral angle (VAVA) of the three most caudal segments of the lumbar spine were measured on MRI and/or on a lateral radiograph in 92 patients with a LSTV and 94 controls, and the differences per segment (Diff-VMVA and Diff-VAVA) were calculated. The Diff-VMVA of the two most caudal vertebrae was significantly higher in the control group (25° (sd 8) than in patients with a LSTV (type 2a+b: 16° (sd 9), type 3a+b: -9° (sd 10), type 4: -5° (sd 7); p < 0.001). A Diff-VMVA of ≤ +10° identified a LSTV with a solid bony bridge (type 3+4) with a sensitivity of 100% and a specificity of 89% on MRI and a sensitivity of 94% and a specificity of 74% on a lateral radiograph. A sensitivity of 100% could be achieved with a cut-off value of 28° for the Diff-VAVA, but with a lower specificity (76%) on MRI than with Diff-VMVA.

Using this simple method (Diff-VMVA ≤ +10°), solid bony bridging of the posterior elements of a LSTV, and therefore the first adjacent mobile segment, can be easily identified without the need for additional imaging.

Cite this article: Bone Joint J 2013;95-B:1533–7.


Bone & Joint Research
Vol. 2, Issue 8 | Pages 169 - 178
1 Aug 2013
Rodrigues-Pinto R Richardson SM Hoyland JA

Mesenchymal stem-cell based therapies have been proposed as novel treatments for intervertebral disc degeneration, a prevalent and disabling condition associated with back pain. The development of these treatment strategies, however, has been hindered by the incomplete understanding of the human nucleus pulposus phenotype and by an inaccurate interpretation and translation of animal to human research. This review summarises recent work characterising the nucleus pulposus phenotype in different animal models and in humans and integrates their findings with the anatomical and physiological differences between these species. Understanding this phenotype is paramount to guarantee that implanted cells restore the native functions of the intervertebral disc.

Cite this article: Bone Joint Res 2013;2:169–78.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 28 - 28
1 Feb 2018
Harrisson S Ogollah R Dunn K Foster N Konstantinou K
Full Access

Background

Patients with low back-related leg pain (LBLP) can present with neuropathic pain; it is not known but is often assumed that neuropathic pain persists over time. This research aimed to identify cases with neuropathic pain that persisted at short, intermediate and longer-term time points, in LBLP patients consulting in primary care.

Methods

LBLP patients in a primary care cohort study (n=606) completed the self-report version of Leeds Assessment for Neurological Symptoms and Signs (s-LANSS, score of ≥12 indicates possible neuropathic pain) at baseline, 4-months, 12-months and 3-years. S-LANSS scores and percentages of patients with score of ≥12 are described at each time-point. Multiple imputation was used to account for missing data.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 34 - 34
1 Jun 2012
Wang Y Bunger C Wu C Hoy K Hansen E
Full Access

Introduction

Distal adding-on is often accompanied by unsatisfactory clinical outcome and high risk of reoperation. However, very few studies have focused on distal adding-on and its attendant risk factors, and optimum treatment strategies remain controversial. In a retrospective study, we aimed to identify risk factors for the presence of distal adding-on in Lenke 1A scoliosis and to compare different treatment strategies.

Methods

Data for all surgically treated patients with adolescent idiopathic scoliosis (AIS) were retrieved from one institutional database. Inclusion criteria included: patients with Lenke 1A scoliosis treated with posterior pedicle screw-only constructs; and a minimum 1-year radiographic follow-up. Distal adding-on was defined as a progressive increase in the number of vertebrae included distally within the primary curve combined with either an increase of more than 5 mm in deviation of the first vertebra below instrumentation from the centre sacral vertical line (CSVL), or an increase of more than 5° in the angulation of the first disc below the instrumentation at 1 year follow-up. Wilcoxon rank-sum test, Fisher's exact test, and Spearman's correlation test were used to identify the risk factors for adding-on. A multiple logistic regression model was built to identify independent predictive factors. Risk factors included: age at surgery; preoperative Cobb angle; correction rate; the gap difference of stable vertebra (SV) and lowest instrumented vertebra (LIV), neutral vertebra (NC) and LIV, and end vertebra (EV) and LIV (gap difference means, for example, if SV is at L2 and LIV is at Th12, then the difference of SV-LIV is 2); and the preoperative deviation of LIV+1 (the first vertebra below the instrumentation) from the CSVL (the vertical line that bisects proximal sacrum). Five methods for determining LIV were compared in both the adding-on group and the no adding-on group.


Objective:

The aim of this study was to define a method to identify the location of the great vessel bifurcation (GVB) in relation to the L5/S1 disc and measure the lumbo-sacral angle (LSA) at L5/S1 using routine lumbar spine MRI images on standard PACS software. The information can be used for surgical planning of anterior lumbar interbody fusion (ALIF) at L5/S1 with a plate and cage.

Method:

Axial and sagittal T2 sections of 192 lumbar spine MRI scans were viewed simultaneously to classify the position of the GVB and the LSA. A further 75 scans were assessed independently by 2 examiners (E1/E2) utilizing the same classification to record the GVB position (High (H), Middle (M), Low (L)) and size of the LSA using standard radiology software. Twenty five images were randomly selected for repeat measurements one month later.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXVII | Pages 16 - 16
1 Jun 2012
Campbell R Epelman M Flynn J Mayer O Panitch H Nance M Blinman T McDonough J Udapa J Deardorff M Rendon N Mong A Finkel R Singh D
Full Access

Introduction

Children with early-onset scoliosis (EOS) with rib hump chest-wall distortion or fused/absent ribs have thoracic insufficiency syndrome (TIS). Commonly, respiration is adversely affected by loss of lung volume from chest-wall constriction and clinical loss of active rib cage expansion. The dynamic thoracic components of diaphragm or rib cage lung expansion during respiration is poorly characterised by radiograph or CT scan. Pulmonary function tests indicate only hemithorax performance. Dynamic lung MRI, however, can visualise both chest-wall and diaphragm motion, allowing assessment of each individual hemithorax performance, so that a dynamic classification system of the thoracic function can be developed.

Methods

Ten patients with TIS underwent dynamic lung MRI testing as part of the routine clinical preoperative work-up. Each hemithorax was graded: 1=intact motion of both chest wall and diaphragm; 2=primarily loss of chest-wall motion with minimal diaphragm abnormality; 3=substantial loss of diaphragm excursion with minimal loss or compensatory hyperkinesis of chest wall; and 4=substantial loss of both diaphragm and chest-wall motion. The grades for each hemithorax were added and averaged to form the thoracic function score. Ranges of scores were grouped into levels of clinical thoracic performance: level I (score 1–1·5); level II (>1·5–2·5); level III (>2·5–3·5); and level IV(>3·5–4·0).


Bone & Joint Open
Vol. 5, Issue 5 | Pages 435 - 443
23 May 2024
Tadross D McGrory C Greig J Townsend R Chiverton N Highland A Breakwell L Cole AA

Aims. Gram-negative infections are associated with comorbid patients, but outcomes are less well understood. This study reviewed diagnosis, management, and treatment for a cohort treated in a tertiary spinal centre. Methods. A retrospective review was performed of all gram-negative spinal infections (n = 32; median age 71 years; interquartile range 60 to 78), excluding surgical site infections, at a single centre between 2015 to 2020 with two- to six-year follow-up. Information regarding organism identification, antibiotic regime, and treatment outcomes (including clinical, radiological, and biochemical) were collected from clinical notes. Results. All patients had comorbidities and/or non-spinal procedures within the previous year. Most infections affected lumbar segments (20/32), with Escherichia coli the commonest organism (17/32). Causative organisms were identified by blood culture (23/32), biopsy/aspiration (7/32), or intraoperative samples (2/32). There were 56 different antibiotic regimes, with oral (PO) ciprofloxacin being the most prevalent (13/56; 17.6%). Multilevel, contiguous infections were common (8/32; 25%), usually resulting in bone destruction and collapse. Epidural collections were seen in 13/32 (40.6%). In total, five patients required surgery, three for neurological deterioration. Overall, 24 patients improved or recovered with a mean halving of CRP at 8.5 days (SD 6). At the time of review (two to six years post-diagnosis), 16 patients (50%) were deceased. Conclusion. This is the largest published cohort of gram-negative spinal infections. In older patients with comorbidities and/or previous interventions in the last year, a high level of suspicion must be given to gram-negative infection with blood cultures and biopsy essential. Early organism identification permits targeted treatment and good initial clinical outcomes; however, mortality is 50% in this cohort at a mean of 4.2 years (2 to 6) after diagnosis. Cite this article: Bone Jt Open 2024;5(5):435–443


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims. Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM. Methods. This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery. Results. A total of 2,114 individuals aged 64.6 years (SD 11.9) who underwent surgery from March 2009 to December 2016 were studied. The most optimal cut-off canal diameters for DcSS are: C3 < 12.9 mm, C4 < 11.8 mm, C5 < 11.9 mm, C6 < 12.3 mm, and C7 < 13.3 mm. Overall, 13.0% (262 of 2,019) of the population-based cohort had multilevel DcSS. Multilevel DcSS (odds ratio (OR) 6.12 (95% CI 3.97 to 9.42); p < 0.001) and male sex (OR 4.06 (95% CI 2.55 to 6.45); p < 0.001) were predictors of developing DCM. Conclusion. This is the first MRI-based study for defining DcSS with multilevel canal narrowing. Level-specific cut-off canal diameters for DcSS can be used for early identification of individuals at risk of developing DCM. Individuals with DcSS at ≥ three levels and male sex are recommended for close monitoring or early intervention to avoid traumatic spinal cord injuries from stenosis. Cite this article: Bone Joint J 2024;106-B(11):1333–1341


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 28 - 28
7 Aug 2024
Wakefield B Roberts L Ryan C
Full Access

Purpose and background. Cauda Equina Syndrome (CES), a rare (<1 per 100,000) and potentially devasting condition, involves compression of the lumbosacral nerve roots. If not quickly identified and treated, it can lead to lasting disability, and high medicolegal costs (>£186 million in the decade to 2018). This study identified why people with suspected CES attend the emergency department (ED) and explored any delays in attending. Methods and Results. The design was a secondary analysis of a qualitative dataset comprising patients with back pain who attended the ED, undertaken using an interpretivist approach. Fourteen patients (8M:6F, aged 23–63 years) with suspected CES were purposively sampled from 4 EDs (2 Northern and 2 Southern) in England between August and December 2021. Semi-structured interviews were conducted online, audio-recorded, transcribed verbatim and analysed thematically. Acopia with pain was the biggest factor in a participant's decision to attend the ED, along with the need for a diagnosis. This pain was the worst ever experienced and debilitating, leaving people unable to cope and desperate for relief. 12/14 were advised to attend the ED following identification of red flags by: GPs (n=9); physiotherapists (n=2); surgical colleague (n=1); and 111 (n=1). Factors such as guilt, previous experience of being disregarded, and symptom misattribution were seen to cause delays in seeking care. Conclusion. This paper revealed a disconnect between the priorities of patients and clinicians prior to attending the ED. Clinicians need to validate the pain experience, communicate clearly why signs and symptoms are concerning, and convey the urgency and potential impact of CES. Conflicts of interest. None. Sources of funding. Funding for primary data: Health Education England & National. Institute of Health and Care Research (ICA-CDRF-2018-04-ST2-040)


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims. The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system. Methods. The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy. Results. A total of 1,123 pedicle screws were implanted: 1,001 screws (89%) were placed robotically, 63 (6%) were converted from robotic placement to a freehand technique, and 59 (5%) were planned to be implanted freehand. Of the robotically placed screws, 942 screws (94%) were determined to be Gertzbein and Robbins grade A with median deviation of 0.8 mm (interquartile range 0.4 to 1.6). Skive events were noted with 20 pedicle screws (1.8%). No adverse clinical sequelae were noted in the 90-day follow-up. The mean fluoroscopic exposure per screw was 4.9 seconds (SD 3.8). Conclusion. RNA is highly accurate and reliable, with a low rate of abandonment once mastered. No adverse clinical sequelae occurred after implanting a large series of pedicle screws using the latest generation of RNA. Understanding of patient-specific anatomical features and the real-time intraoperative identification of risk factors for suboptimal screw placement have the potential to improve accuracy further. Cite this article: Bone Joint J 2023;105-B(5):543–550


Background. Magnetic resonance imaging (MRI) algorithm identifies end stage severely degenerated disc as ‘black’, and a moderately degenerate to non-degenerated disc as ‘white’. MRI is based on signal intensity changes that identifies loss of proteoglycans, water, and general radial bulging but lacks association with microscopic features such as fissure, endplate damage, persistent inflammatory catabolism that facilitates proteoglycan loss leading to ultimate collapse of annulus with neo-innervation and vascularization, as an indicator of pain. Thus, we propose a novel machine learning based imaging tool that combines quantifiable microscopic histopathological features with macroscopic signal intensities changes for hybrid assessment of disc degeneration. Methods. 100-disc tissue were collected from patients undergoing surgeries and cadaveric controls, age range of 35–75 years. MRI Pfirrmann grades were collected in each case, and each disc specimen were processed to identify the 1) region of interest 2) analytical imaging vector 3) data assimilation, grading and scoring pattern 4) identification of machine learning algorithm 5) predictive learning parameters to form an interface between hardware and software operating system. Results. Kernel algorithm defines non-linear data in xy histogram. X,Y values are scored histological spatial variables that signifies loss of proteoglycans, blood vessels ingrowth, and occurrence of tears or fissures in the inner and outer annulus regions mapped with the dampening and graded series of signal intensity changes. Conclusion. To our knowledge this study is the first to propose a machine learning method between microscopic spatial tissue changes and macroscopic signal intensity grades in the intervertebral disc. No conflict of interest declared.  . Sources of Funding. ICMR/5/4-5/3/42/Neuro/2022-NCD-1, Dr TMA PAI SMU/ 131/ REG/ TMA PURK/ 164/2020. A part of the above study was presented as an oral paper at the International Society for the Study of Lumbar Spine (ISSLS) meeting held on 1–5. th. May 2023, Melbourne, Australia


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 97 - 102
1 Jan 2022
Hijikata Y Kamitani T Nakahara M Kumamoto S Sakai T Itaya T Yamazaki H Ogawa Y Kusumegi A Inoue T Yoshida T Furue N Fukuhara S Yamamoto Y

Aims. To develop and internally validate a preoperative clinical prediction model for acute adjacent vertebral fracture (AVF) after vertebral augmentation to support preoperative decision-making, named the after vertebral augmentation (AVA) score. Methods. In this prognostic study, a multicentre, retrospective single-level vertebral augmentation cohort of 377 patients from six Japanese hospitals was used to derive an AVF prediction model. Backward stepwise selection (p < 0.05) was used to select preoperative clinical and imaging predictors for acute AVF after vertebral augmentation for up to one month, from 14 predictors. We assigned a score to each selected variable based on the regression coefficient and developed the AVA scoring system. We evaluated sensitivity and specificity for each cut-off, area under the curve (AUC), and calibration as diagnostic performance. Internal validation was conducted using bootstrapping to correct the optimism. Results. Of the 377 patients used for model derivation, 58 (15%) had an acute AVF postoperatively. The following preoperative measures on multivariable analysis were summarized in the five-point AVA score: intravertebral instability (≥ 5 mm), focal kyphosis (≥ 10°), duration of symptoms (≥ 30 days), intravertebral cleft, and previous history of vertebral fracture. Internal validation showed a mean optimism of 0.019 with a corrected AUC of 0.77. A cut-off of ≤ one point was chosen to classify a low risk of AVF, for which only four of 137 patients (3%) had AVF with 92.5% sensitivity and 45.6% specificity. A cut-off of ≥ four points was chosen to classify a high risk of AVF, for which 22 of 38 (58%) had AVF with 41.5% sensitivity and 94.5% specificity. Conclusion. In this study, the AVA score was found to be a simple preoperative method for the identification of patients at low and high risk of postoperative acute AVF. This model could be applied to individual patients and could aid in the decision-making before vertebral augmentation. Cite this article: Bone Joint J 2022;104-B(1):97–102


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims. Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy. Methods. We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed. Results. Of the 299 cases reviewed, 279 (93.3%) had acceptable traces throughout and awoke with normal clinical neurological function. No patient with normal traces had a postoperative clinical neurological deficit. True alerts occurred in 20 cases (6.7%). The diagnoses of the alert group included nine cases of adolescent idiopathic scoliosis (AIS) (45%) and six of congenital scoliosis (30%). The incidence of deterioration based on diagnosis was 9/153 (6%) for AIS, 6/30 (20%) for congenital scoliosis, and 2/16 (12.5%) for spinal tuberculosis. Deterioration was much more common in congenital scoliosis than in AIS (p = 0.020). Overall, 65% of alerts occurred during rod instrumentation: 15% occurred during decompression of the internal apex in vertebral column resection surgery. Four alert cases (20%) awoke with clinically detectable neurological compromise. Conclusion. Surgeon-directed TcMEP monitoring has a 100% negative predictive value and allows early identification of physiological cord distress, thereby enabling immediate intervention. In resource constrained environments, surgeon-directed TcMEP is a viable and effective method of intraoperative spinal cord monitoring. Level of evidence: III. Cite this article: Bone Joint J 2021;103-B(3):547–552


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 13 - 13
1 Sep 2021
Patankar A Fragkakis EM Papadakos N Fenner C Ajayi B Beharry N Lupu C Bernard J Bishop T Lui DF
Full Access

Introduction. Degenerative spondylosis (DS) represents a challenging condition to diagnose and treat. There are multiple modalities to investigate DS including X-ray, MRI and CT, but symptoms may not be equivocal to DS to support the clinical findings. The investigation of metastases commonly utilises SPECT/CT for identification of areas of increased osteoblastic activity to denote disease. The aim of the study was to analyse the prevalence of asymptomatic DS in a consecutive hospital cohort of oncology patients who had SPECT/CT for investigation of metastases. Methods. Oncology patients who underwent SPECT/CT at St. George's Hospital were analysed between 2015–2019. Exclusion criteria: back pain, inflammatory disorders, metastases, trauma, infection. Radiology reports were examined for DS and anatomical distribution of tracer uptake. Results. A total of 1182 patients had a Whole-Body SPECT CT used for the spinal analysis. After exclusions (age >80 [n=260], non-cancer [n=318], back pain [n=72]), 522 reports with cancer were utilised. Mean age was 65 (4–80). Age and distribution of DS are given in the table. Conclusion. The prevalence of radiological asymptomatic DS is prevalent in large proportions of patients without back pain, and its incidence increases with age. Approximately 60% of 60 year old and 70% of 70 years old patients have asymptomatic DS in the lumbosarcal region. We conclude that SPECT/CT will detect radiographic degenerative spondylosis in an asymptomatic hospital cohort and this prevalence increase with age. Therefore, this modality of imaging must be utilised with caution when investigating potential pain generators. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 14 - 14
1 Sep 2021
Hashmi SM Hammoud I Ansar MN Golash A
Full Access

Introduction and Objective. Almost 60% of the population can expect to experience low back pain (LBP) during their life. Several radiological tools are used to investigate LBP. However, adequate evidence is unavailable to support the use of single photon emission computer tomography (SPECT) in patients with LBP. The objective of this study is to assess the role and efficiency of SPECT in evaluation and management of patients with LBP. Method. Ninety-two patients with LBP were examined and assessed. All the patients received a magnetic resonance imaging (MRI) scan and were referred for a SPECT. We interpreted the modic and degenerative changes found on the MRI and compared it with SPECT tracer uptake. SPECT was used to identify the pain generator and then a surgical plan was made. Data was analyzed for pain improvement in those who underwent surgical treatment to establish the accuracy of CT SPECT in identification of primary pain generator. Results. A total of 184 patients were included in the study who underwent diagnostic CT-SPECT between January 2013 and December 2019. One hundred of them were females and Eighty four males; the mean age was 47.6 years. 111 patients underwent surgery in the form of interbody fusion or posterolateral fusion. 16 patients positive tracer uptake was at asymptomatic level or unrelated. In 3 patients SPECT identified screw sites as pain generator and in all 3 patients screws were removed with good pain relief. Overall axial pain as measured with Numeric rating scale was preoperatively 9.13 ± 0.7 and improved to 4.54 ± 2.3 at 6 months postoperative follow up. MRI changes have been analyzed and correlation studied with relation to SPECT findings. Conclusion. Due to its high precision and sensitivity compared to other radiological modalities, SPECT demonstrated the ability to aid in clinical diagnosis. CT SPECT reveals information that becomes vital in deciding further management. In this study, we exemplified that SPECT scan can give indication for pain generator in axial spine pain and aid in surgical intervention


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 371 - 375
1 Mar 2020
Cawley D Dhokia R Sales J Darwish N Molloy S

With the identification of literature shortfalls on the techniques employed in intraoperative navigated (ION) spinal surgery, we outline a number of measures which have been synthesised into a coherent operative technique. These include positioning, dissection, management of the reference frame, the grip, the angle of attack, the drill, the template, the pedicle screw, the wire, and navigated intrathecal analgesia. Optimizing techniques to improve accuracy allow an overall reduction of the repetition of the surgical steps with its associated productivity benefits including time, cost, radiation, and safety. Cite this article: Bone Joint J 2020;102-B(3):371–375