Advertisement for orthosearch.org.uk
Results 1 - 20 of 237
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 95 - 95
1 Dec 2022
Jirovec A Flaman A Purgina B Diallo JS Werier JM
Full Access

The poor prognosis of patients with soft-tissue sarcoma as not changed in the past several decades, highlighting the necessity for new therapeutic approaches. T-cell based immunotherapies are a promising alternative to traditional cancer treatments due to their ability to target only malignant cells, leaving benign cells unharmed. The development of successful immunotherapy requires the identification and characterization of targetable immunogenic tumor antigens. Cancer-testis antigens (CTA) are a group of highly immunogenic tumor-associated proteins that have emerged as potential targets for CD8+ T-cell recognition. In addition to identifying a targetable antigen, it is crucial to understand the tumor immune microenvironment. The level of immune infiltration and mechanisms of immune suppression within the tumor play important roles in the outcome of immunotherapy. The goal of this study is to identify targetable immunogenic antigens for T-cell based immunotherapy and to characterize the tumor immune microenvironment in human dedifferentiated liposarcoma (DDLS) by Nanostring and IHC. To assess the complexity of the human DDLS tumor immune microenvironment and to identify target antigens we used the nCounter NanoString platform to generate a gene expression profile for hundreds of genes from RNA obtained from 29 DDLS and 10 control fat FFPE samples. To classify inflammatory status of DDLS tumors, we performed hierarchical clustering based on expression levels of selected tumor inflammatory signature genes (CCL5, CD27, CD274, CD276, CD8A, CMKLR1, CXCL9, CXCR6, HLA-DQA1, HLA-E, IDO1, LAG3, PDCDILG2, PSMB10, STAT1, TIGIT). To confirm protein expression and distribution of identified antigens, we performed immunohistochemistry on human tissue micro-arrays encompassing DDLPS tumor tissues and matched normal control tissue from 63 patients. IHC for the cancer testis antigens PBK, SPA17, MAGE-A3, NY-ESO-1 and SSX2 was performed, and the staining results were scored by two authors based on maximal staining intensity on a scale of zero to three (absent=0, weak=1, moderate=2, or strong=3) and the percentage of tumor cells that stained. Hierarchical clustering of DDLS tumors based on expression of tumor inflammation signature genes revealed two distinct groups, consisting of 15 inflamed tumor and 14 non-inflamed tumors, demonstrating tumor heterogeneity within the DDLS sarcoma subtype. All antigens were found to be expressed in DDLS at an mRNA level. SPA17 was expressed at the highest levels in DDLS, however, this antigen was expressed at high levels in normal fat. Notably, antigens PBK and TTK had the largest fold change increase in expression in DDLS compared to normal fat controls. Immunohistochemical analysis of selected antigens revealed that PBK was found to be expressed in 96% (52/54) of DDLS samples at high levels. Other antigens were absent or expressed at low levels in DDLS; MAGEA3 in 15.87% (10/63) NY-ESO-1 in 6.35% (4/62) and SSX2 in 12.7% (8/63) and SPA17 in 5.5% (3/54). This data shows considerable inter-tumoral heterogeneity of inflammation, which should be taken into consideration when designing an immunotherapy for DDLS. To date, these results show promising expression of PBK antigen in DDLS, which may be used as a target in the future development of an immunotherapy for sarcoma


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 46 - 46
1 Dec 2021
Chisari E Siqueira M Yacovelli S Goswami K Brownfield M Parvizi J
Full Access

Aim. Microbial identification in the setting of periprosthetic joint infections (PJI) is crucial to tailor the best combination of surgical and medical treatment. Given the high cost, low sensitivity and slow results associated with traditional cultures, s synovial fluid antibody assay was developed. We asked whether antibody testing may be used as a proxy to traditional culture in the setting of PJI. Method. A retrospective study of patients who underwent revision total hip (THA) and knee (TKA) arthroplasty between January 2019 and January 2020 was performed. All patients were aspirated prior to revision surgery and antibody testing was performed. All patients had samples harvested for culture as per standard of care. Results of the two tests and their concordance when an organism was identified were compared. A frequency table was used and a McNemar test was used to compare the two methods. Results. 419 patients were included in this study. Antibody testing had a sensitivity and specificity of 21.9% and 92.5%, respectively, compared to traditional cultures. There were 78.1% of false negative and 7.5% of false positives (McNemar test p<0.001). Of the 12 patients who had positive results in both tests, 5 (41.7%) had discordant pathogens identified in each test. Conclusions. Synovial fluid antibody testing performed poorly when used as a substitute for cultures and may not be a clinically adequate surrogate despite lower cost and faster results. Not only was there a low sensitivity, but also a high rate of discordant organisms between the two tests when both were positive


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 23 - 23
1 Dec 2021
Kokenda C Legendre T Abad L Graue C Jay C Ferry T Dupieux-Chabert C kensinger B Laurent F
Full Access

Aim. Bone and Joint Infections (BJIs) present with non-specific symptoms and can be caused by a wide variety of bacteria and fungi, including many anaerobes and microorganisms that can be challenging to culture or identify by traditional microbiological methods. Clinicians currently rely primarily on culture to identify the pathogen(s) responsible for infection. The BioFire. ®. FilmArray. ®. Bone and Joint Infection (BJI) Panel (BioFire Diagnostics, Salt Lake City, UT) was designed to detect 15 gram-positive (seven anaerobes), 14 gram-negative bacteria (one anaerobe), two yeast, and eight antimicrobial resistance (AMR) genes from synovial fluid specimens in an hour. The objective of this study was to evaluate the performance of an Investigational Use Only (IUO) version of the BioFire BJI Panel (BBJIP) compared to conventional used as reference methods. Method. In a monocentric study, leftover synovial fluid specimens were collected in a single institution including 4 hospitals and tested using conventional bacterial culture (Standard of Care (SoC)) according to routine procedures following French national recommendations. Specimen has been placed in a refrigerator (4°C) as soon as possible after collection and stored for less than or equal to 7 days before enrollment. Performance of the IUO version of the BBJIP was determined by comparison to SoC for species identification. Results. To date, 201 specimens have been collected and tested using BBJIP. A total of 39 pathogens were obtained in culture. Compared to SoC culture, the overall PPA was 89.7% (35 TP, 4 FN (SA, 1; Strepto Spp, 2; P. micra, 1) and the overall NPA was 99.7% with 16 FP for a total of 5374 bacterial targets screened. Two complementary molecular tests using home-made PCR are underway to definitively conclude about the FN et FP for BBJIP observed in the preset study. Conclusions. The BioFire BJI Panel appears as a promising, sensitive, specific, and robust test for rapid detection of 31 microorganisms (including anaerobes) and eight AMR genes in synovial fluid specimens. The number of pathogens and resistance markers included in the BioFire BJI Panel, together with a reduced time-to-result and increased diagnostic yield compared to culture, is expected to aid in the management of BJIs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 92 - 92
1 Jan 2016
Noble P Noel C
Full Access

INTRODUCTION. The timely identification of outliers (implants, surgeons or patients) using prospectively collected registry data is confounded by many factors, including the assumption that the sampled population is representative of the entire cohort of patients. In this study we utilized a computer simulation of a joint registry to address the question: How does incomplete enrollment of patients in registries affect the reliability of identification of outliers, and what percent capture of the target population is sufficient?. MATERIALS AND METHODS. A synthetic registry was created consisting of 10,000 patients (100 surgeons), of whom, 1000 underwent joint replacement using a new implant. A predictive model for the risk of revision was created from data published by the Swedish TKR Registry and the AOANJRR. The pairing of patients, surgeons and implants was randomized and for each assignment, the probability of revision was computed. We then chose random samples of all patients in 10% increments from 10% to 100%, simulating incomplete capture of all potential cases by the registry. For each sample we calculated the number of cases of the new implant predicted to end in revision. The assignments were repeated 2000 times using implants with revision rates of 1.5%, 2.0% and 3.0% per annum vs. 1.0% for all other implants of the same class. RESULTS. The observed failure rate of the new implant averaged 2.0%, but varied from 0.7–3.8% over the 2000 trials, with 100% enrollment. With only 10% enrollment, the spread of failure rates increased to 0.0–7.8%, corresponding to a 152% increase in the variability of the observed revision rate. When enrollment was increased from 80% to 100%, the variability of the failure rate changed by only 9% from a range of 1.63% (1.23–2.86%) to 1.50% (1.30–2.80%) (90% CI). The reliability of detection of poorly performing implants improved dramatically with enrollment. With 70% enrollment, an implant with a 2.0% failure rate could be detected with 95% confidence, while a 3.0% implant became apparent with only 21% enrollment. Conversely, with even 100% enrollment it was not possible to identify implants with a 1.5% annual failure rate with 95% confidence. CONCLUSIONS. If registries collect a truly representative sample of only 50–80% of the total patient population, there will be only a slight increase in the risk of overlooking an inferior outlier, including poorly-performing implants, compared to 100% patient capture. Our results suggest that enrollment of every patient receiving a given treatment is not nearly as important as randomization of the sample subjected to analysis


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 89 - 89
1 Mar 2017
Plate J Shields J Bolognesi M Seyler T Lang J
Full Access

Introduction. The number of complex revision total hip arthroplasties (THA) is predicted to rise. The identification of acetabular bone defects prior to revision THA has important implications on technique and complexity of acetabular reconstruction. Paprosky et al. proposed a classification system including 3 main types with up to 3 subtypes focused on the integrity of the superior rim of the acetabulum and medial wall. However, the classification system is complex and its reliability has been questioned. The purpose of this study was to evaluate the effectiveness of different radiologic imaging modalities (plain radiographs, 2-D CT, 3-D CT reconstructions) in classifying acetabular defects in revision hip arthroplasty cases and their value of at different levels of orthopaedic training. Methods. Patients treated with revision total hip arthroplasty for acetabular bone defects between 2002–2012 were identified and 22 cases selected that had plain radiographs, 2-D CT and 3-D reconstructions available. Bone defects were classified independently by two fellowship-trained adult reconstruction surgeons. Representative sections were chosen and compiled into a timed presentation. Thirty-five residents from PGY-1 to PGY-5 and 4 attending orthopaedic surgeons were recruited for this study and received a 15-minute introduction to the classification system. Chi square analysis was utilized to examine the influence of image modality and level of training on the correct classification of acetabular bone loss using the Paprosky classification system with alpha=0.05. Results. The correct classification regardless of imaging of PGY levels was 30%. The level of training did not influence the ability to classify an acetabular defect (p=0.918). Correct classification was significantly influenced by the imaging used. Using x-ray led to 37% correctly identified defects, CT scans to 33% and 3D modeling to 30% of correct answers (p<0.001). For Class 1 defects, x-ray imaging had significantly higher number of correct classification (93%) compared to CT scans (67%) and 3D modeling (31%, p<0.001). Similarly, 2A defects were classified correctly with higher frequency on x-ray (49%) compared to CT scans (36%) or 3D modeling (15%, p=0.007). For type 2B, 2C, 3A and 3B defects, the type of imaging did not influence the frequency of correct answer. The level of training did not influence the frequency of correct classification regardless of the type of defect (p<0.05). However, there was a significant difference based on the defect type (p<0.001). Regardless of level of training or imaging, 64% of observers recognized type 1 defects, compared to only 16% correct recognition of 3B defects. Discussion. In the current study using different image modalities, residents regardless of the level of training were only able to classify 30% of defects correctly using the Paprosky classification system of acetabular defects. Using plain x-rays led to an increased number of correct classification, while regular CT scan and 3D CT reconstructions did not improve accuracy. The cost for advanced imaging when using this classification may not be justified. The Paprosky classification system of acetabular defects can be used for treatment decisions; however, it is complex and residents may require increased education in its use and identification of defects


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_19 | Pages 24 - 24
1 Apr 2013
Jalgaonkar A Mohan A Dawson-Bowling S Muthukumar T Pollock R Skinner J Cannon S Briggs T Aston W
Full Access

Introduction. Local recurrence of tumours along the biopsy tract is a known complication of percutaneous closed needle biopsy. Correct surgical management requires preoperative identification and excision of the biopsy tract at time of surgery. These tracts become increasingly difficult to identify with time, leading to risk of inadequate excision of the biopsy tract and recurrence of the tumour at the biopsy site. Materials/Methods. In a prospective study conducted at our institution, 22 of the 45 patients with musculoskeletal tumours (49%) had unidentifiable biopsy sites, with a mean duration between biopsy and definite surgery being 98 days (range 13–164 days). We concluded that identification of the biopsy site was more difficult after 50 days. Radiotherapy related scar formation and the longer time duration between biopsy and definite surgery in patients requiring neoadjuvant therapy made identification more unlikely. Consequently, all patients received India ink skin tattoo to mark the biopsy site at the time of the needle biopsy. 56 patients were then prospectively reviewed on the day of surgery to identify the biopsy site. Results. The biopsy tract was easily identifiable in all 56 patients (100%) by junior and senior orthopaedic surgeons. The mean duration between the skin tattoo and surgery was 68 days (range 12–299 days). Radiotherapy and chemotherapy did not influence the identification of the tattoo site. Conclusions. Tattooing the skin with India ink enabled the surgeon to accurately excise the biopsy tract. We recommend this technique of tattooing the biopsy site with India ink as it is safe, easily recognisable and aids in accurate excision of the tract and the tattoo site


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims

This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms.

Methods

We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 38 - 38
1 Dec 2022
Sheridan G Hanlon M Welch-Phillips A Spratt K Hagan R O'Byrne J Kenny P Kurmis A Masri B Garbuz D Hurson C
Full Access

Hip resurfacing may be a useful surgical procedure when patient selection is correct and only implants with superior performance are used. In order to establish a body of evidence in relation to hip resurfacing, pseudotumour formation and its genetic predisposition, we performed a case-control study investigating the role of HLA genotype in the development of pseudotumour around MoM hip resurfacings.

All metal-on-metal (MoM) hip resurfacings performed in the history of the institution were assessed. A total of 392 hip resurfacings were performed by 12 surgeons between February 1st 2005 and October 31st 2007. In all cases, pseudotumour was confirmed in the preoperative setting on Metal Artefact Reduction Sequencing (MARS) MRI. Controls were matched by implant (ASR or BHR) and absence of pseudotumour was confirmed on MRI. Blood samples from all cases and controls underwent genetic analysis using Next Generation Sequencing (NGS) assessing for the following alleles of 11 HLA loci (A, B, C, DRB1, DRB3/4/5, DQA1, DQB1, DPB1, DPA1). Statistical significance was determined using a Fisher's exact test or Chi-Squared test given the small sample size to quantify the clinical association between HLA genotype and the need for revision surgery due to pseudotumour.

Both groups were matched for implant type (55% ASR, 45% BHR in both the case and control groups). According to the ALVAL histological classification described by Kurmis et al., the majority of cases (63%, n=10) were found to have group 2 histological findings. Four cases (25%) had group 3 histological findings and 2 (12%) patients had group 4 findings. Of the 11 HLA loci analysed, 2 were significantly associated with a higher risk of pseudotumour formation (DQB1*05:03:01 and DRB1*14:54:01) and 4 were noted to be protective against pseudotumour formation (DQA1*03:01:01, DRB1*04:04:01, C*01:02:01, B*27:05:02).

These findings further develop the knowledge base around specific HLA genotypes and their role in the development of pseudotumour formation in MoM hip resurfacing. Specifically, the two alleles at higher risk of pseudotumour formation (DQB1*05:03:01 and DRB1*14:54:01) in MoM hip resurfacing should be noted, particularly as patient-specific genotype-dependent surgical treatments continue to develop in the future.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 95 - 95
1 Jan 2013
Davis E Smith G Prakash K Schubert M Wegner M Martin H
Full Access

Optimum component orientation in hip arthroplasty is vital in an effort to avoid dislocation and excessive wear. Computer navigation in hip arthroplasty surgery has the potential to improve accuracy in component placement. However, it has been slow to gain widespread acceptance. One of the major concerns surgeons have is the difficulty in registering pelvic landmarks. We used a retrospective series of 200 pelvic CT scans to validate a new methodology to construct the anterior pelvic plane, using anatomical landmarks that are easily palpated with the patient positioned and draped in the lateral decubitus position. Analysis of the scans was also made in an effort to stimulate the inaccuracies of obtaining the anterior pelvic plane through soft tissue. When comparing the new registration methodology to the anterior pelvic plane, the error in acetabular component inclination was 0.69° (SD 2.96) and anteversion was 1.17° (SD 3.53). This compares favourably to the error in acetabular component inclination of −0.92° (SD 0.26) and anteversion of −5.24° (SD 2.09) when the anterior pelvic plane is registered through soft tissue. The data also shows that using the new registration method in more than 99.6% of cases the acetabular placement is within the safe zone as described by Lewinnek. This study appears to show that through the identification of anatomical constants we are able to construct the anterior pelvic plane from anatomical landmarks that are easily palpable in the lateral decubitus position during hip arthroplasty. These landmarks also appear to be more accurate in obese patients than registering the anterior pelvic plane


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 226 - 226
1 Dec 2013
Amanatullah D DiCesare PE Meere P Pereira G
Full Access

Incorrect registration during computer assisted total knee arthroplasty (CA-TKA) leads to malposition of implants. Our aim was to evaluate the tolerable error in anatomic landmark registration. We incorrectly registered the femoral epicondyles, femoral and tibial centers, as well as the malleoli and documented the change in angulation or rotation. We found that the distal femoral epicondyles were the most difficult anatomic landmarks to register. The other bony landmarks were more forgiving. Identification of the distal femoral epicondyles has a high inter- and intra-observer variability. Our observation that there is less than 2 mm of safe zone in the anterior or posterior direction during registration of the medial and lateral epicondyles may explain the inability of CA-TKA to improve upon the outcomes of conventional TKA


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2021
Soltanihafshejani N Bitter T Janssen D Verdonschot N
Full Access

Introduction

The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear bone biomechanics that influences implant fixation.

Methods

Mechanical testing of human tibial trabecular bone was done under uniaxial and confined compression configurations. We examined 62 human trabecular bone samples taken from 8 different cadaveric tibiae to obtain all the required parameters defining the CFM, dependent on local bone mineral density (BMD). The derived constitutive rule was subsequently applied using an in-house subroutine to the FE models of the bone specimens, to compare the model predictions against the experimental results.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 45 - 45
1 Oct 2012
Spencer S Deakin A Clarke J
Full Access

Range of motion (ROM) is a well recognised outcome measure following total knee arthroplasty (TKA). Reduced knee flexion can lead to poor outcome after TKA and therefore identification at an early stage is important as it may provide a window for intervention with targeted physiotherapy, closer follow-up and in resistant cases possible manipulation or arthrolysis. ROM combines both flexion and extension and in contrast to flexion, fewer studies have recognised the importance of a lack of full extension or fixed flexion deformity (FFD) following TKA. A residual FFD can increase energy cost, decrease velocity during ambulation and result in pain with knee scores more likely to be diminished than if knee extension was normal. Recognition and early detection of FFD is therefore important. Methods of assessment include by visual estimation or goniometric measurement of knee flexion angle. While goniometers are inexpensive, easy to use and provide more accurate than visual estimates of angles, they have been shown to exhibit poor inter-observer reliability. Therefore they may not be sensitive enough to consistently identify FFD and therefore distinguish between grading systems based on absolute angular limits. The aim of this study was to investigate the accuracy of standard clinical ROM measurement techniques following TKA and determine their reliability for recognising FFD. Ethical approval was obtained for this study. Thirty patients who were six weeks following TKA had their knee ROM measured. An infrared (IR) tracking system (±1°accuracy) that had been validated against an electro-goniometer was used to give a “true” measurement of the lower limb sagittal alignment with the knee fully extended and maximally flexed while the patient was supine. The patients were also assessed independently by experienced arthroplasty practitioners using a standardised goniometric measurement technique. For goniometric clinically-measured flexion (Clin. flex). and extension (Clin. ext. ) linear models were generated using IR-measured flexion and extension (IR. flex. and IR. ext. ), BMI and gender as covariables. Data for extension were categorised in none, moderate and severe postoperative FFD as per Ritter et al. 2007 and agreement in classification between the two methods was assessed using the Kappa statistic. For the linear models for Clin. flex. and Clin. ext. neither BMI nor gender were significant variables. Therefore the final models were:. Clin. flex. = 0.54 + 0.66∗IR. flex. (r. 2. adj. = 0.521). Clin. ext. = 0.23 + 0.50∗IR. ext. (r. 2. adj. = 0.247). The model for Clin. flex. showed that the IR and clinical measurements coincided at approximately 90° so that for every 10° increase in flexion above 90° clinical measurement only increased by 7° but for every 10° decrease in flexion below 90° clinical measurement only decreased by 7°. The model for Clin. ext. showed that the IR and clinical measurements coincided at approximately 0° so that for every 10° increase in FFD angle, clinical measurement only increased by 5° but if the knee went into hyperextension this would be underestimated by the clinical measure. In identifying FFD there was moderate agreement between the two measurements (κ = 0.44). Clinically nine patients were assessed as having FFD but the IR measurements showed 18 patients having FFD, of which nine patients were not identified clinically. When assessing knee ROM following joint arthroplasty manual goniometric measurements provided a poor estimate of the range when compared to the “true” angle as measured with a validated IR measurement tool. When the knee was held in maximum flexion there was a tendency to both underestimate and overestimate the true angle. However when the knee was held in extension there was a tendency to underestimate which we believe is important as it would underreport both the frequency and magnitude of FFD. In our study, 18 patients had a moderate FFD as identified by the IR system, only half of which were identified by goniometer measurement alone. Studies of comparisons of both visual and manual goniometry measurements of the knee in maximum flexion with lateral radiographs have shown most errors involved an underestimate of true flexion. It has been concluded that it was safer to underestimate knee flexion angle as it would result in higher pick up rate of cases being performing less well. In contrast however, underestimation while in extension is less desirable as it fails to pick-up FFD which may have benefited from intervention had they been identified. It is known that residual FFD can increase energy cost and decrease velocity during ambulation with pain and functional knee scores more likely to be reduced. Recognition and early detection is therefore important. With the use of more accurate systems to identify and measure FFD, such as the one used for this study may in turn allow more timely treatment and therefore hopefully improved outcomes


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 71 - 71
1 Dec 2018
van Dijk B Boot W Fluit AC Kusters JG Vogely HC van der Wal BCH Weinans HH Boel CHE
Full Access

Aim

Here we describe a cohort study to determine the performance of a commercially available Fluorescence In Situ Hybridization (FISH)-kit on samples of 65 consecutive patients suspected of orthopedic implant associated infections (IAI). Culture is routinely used and has a high specificity and sensitivity but requires days to more than a week for slow growing bacteria. FISH results are available within 45–60 minutes and thus specific treatment can start immediately. In addition, previous antibiotic therapy may hinder culture while bacteria may still be detected by FISH.

Method

The hemoFISH-kit from Miacom diagnostics (Dusseldorf, Germany) was used on a total of 82 joint aspirates, sonication fluids and tissue samples of 65 consecutive patients to detect and identify possible microorganisms. This FISH-kit contains a universal 16S rRNA probe and species-specific probes for bacteria commonly encountered in blood infections. FISH and culture were compared to the clinical definition of IAI. These definitions were based on the criteria described by Pro-Implant Foundation criteria for IAI after fracture fixation or prosthetic joint infection. If no criteria were described in the literature for a specific IAI then MSIS criteria were used.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 136 - 136
1 May 2016
Foran J Kittleson A Dayton M Hogan C Schmiege S Lapsley J
Full Access

Introduction

Pain related to knee osteoarthritis (OA) is a complex phenomenon that cannot be fully explained by radiographic disease severity. We hypothesized that pain phenotypes are likely to be derived from a confluence of factors across multiple domains: knee OA pathology, psychology, and neurophysiological pain processing. The purpose of this study was to identify distinct phenotypes of knee OA, using measures from the proposed domains.

Methods

Data from 3494 subjects participating in the Osteoarthritis Initiative (OAI) study was analyzed. Variables analyzed included: radiographic OA severity (Kellgren-Lawrence grade), isometric quadriceps strength, Body Mass Index (BMI), comorbidities, CES-D Depression subscale score, Coping Strategies Questionnaire Catastrophizing subscale score, number of pain sites, and knee tenderness on physical examination. Variables used for comparison across classes included pain severity, WOMAC disability score, sex and age. Latent Class Analysis was performed. Model solutions were evaluated using the Bayesian Information Criterion. One-way ANOVAs and post hoc least significance difference tests were used for comparison of classes.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 87 - 87
1 Dec 2013
Janz V Wassilew GI Matziolis G Tohtz S Perka C
Full Access

Introduction

The utilization of sonicate fluid cultures (SFC) has been shown to increase the detection rate of periprosthetic joint infection (PJI) in comparison to the use of conventional microbiological methods, because sonication enables a sampling of the causative bacteria directly from the surface of the endoprosthetic components. The hypothesis of this study is that not only will the detection rate of PJI be improved, but also the detection rate of polymicrobial infection in patients with total knee arthroplasty (TKA) revision surgery.

Material and methods

74 patients which underwent TKA revision surgery received a synovial aspiration, intraoperative tissue cultures, histological sampling of the periprosthetic membrane, and sonication of the explanted endoprosthesis. A PJI was defined according to the following criteria: presence of intraarticular pus or a sinus tract, positive isolation of causative bacteria in ≥2 microbiological samples or a histological membrane indicative of infection (type II or III periprosthetic membrane).


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 13 - 13
1 Jan 2013
Williams G Widnall J Evans P Platt S
Full Access

Introduction

Literature in respect to the MRI appearances of surgically confirmed spring ligament pathology is sparse. The authors conducted a retrospective review of MRI examinations comprising 13 patients with surgically proven spring ligament abnormality.

Methods

Records for operations performed for planovalgus foot deformity with operation notes confirming presence of spring ligament abnormality were obtained for patients treated 2010–11. Of 32 procedures 13 patients (3 male, 10 female) mean age 48.5 (range, 21–86 years) underwent preoperative MRI scanning using a standard musculoskeletal protocol on a T1.5 unit. Scans were retrospectively reviewed by one of the senior authors and consultant musculoskeletal radiologist for pathological findings.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 22 - 22
1 Mar 2013
Branovacki G Prokop T Huizinga A Redondo L
Full Access

Introduction

Proper femoral stem and acetabular implant orientation is critical to the initial and long-term success of THA. Post-operative determination of cup and stem anteversion is important in cases of hip instability and planning isolated component revisions. At ISTA 2010 Dubai, we introduced a novel, simple stem modification that can be added to any stem design to help assess stem, and possibly cup anteversion with plain post-operative radiographs throughout the lifespan of the implant. [Figure 1] As the stem is rotated, the visible hole pattern changes. [Figure 2] This study was performed to further validate the accuracy and potential usefulness of this design.

Methods

We prospectively reviewed 100 consecutive THA cases using the stem reference hole modification on rectangular tapered Zweymuller-type stems implanted from September 2010 to May 2012. Post-operative hip/femur CT scans were obtained to determine the true cup and stem orientation to validate and quanitify the precision of the reference holes. Intra-operative estimates of stem anteversion and combined anteversion (Ranawat Sign) were recorded. Post-operative radiograph measurement of stem anteversion (AP hip x-ray with leg in neutral rotation) was obtained and compared to the CT scan measurement referencing stem rotation relative to the knee epicondylar axis. [Figure 3] In addition, we compared the modified reference hole anteversion assessment to a control group of original unmodified stems assessed using the same methods.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 160 - 160
1 Sep 2012
Glen L Ismail N Ashraf W Scammell B Bayston R
Full Access

Aim

To test the hypothesis that surface skin swabs taken after skin preparation with alcoholic povidone iodine (APVPI) would not grow bacteria, whereas full thickness biopsies taken from the line of surgical incision would grow bacteria.

Method

Informed consent was obtained from 44 patients undergoing primary hip (n=13) and knee (n=31) arthroplasty. Each received antimicrobial prophylaxis before skin preparation with APVPI under laminar flow. After the APVPI had dried, a skin swab and a full thickness 8mm x 4mm elliptical skin biopsy were taken from the line of incision. The skin swab was rolled in 5mL anaerobe basal broth to inactivate the APVPI, incubated at 37 degrees and checked for growth for 2 weeks. One half of the skin biopsy was snap frozen and used for gram and nitroblue tetrazolium staining. The other half was placed into 5mL of anaerobe basal broth, incubated at 37 degrees and monitored for growth for 2 weeks.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_9 | Pages 19 - 19
1 Jun 2021
Desai P
Full Access

Problem. The identification of unknown orthopaedic implants is a crucial step in the pre-operative planning for revision joint arthroplasty. Compatibility of implant components and instrumentation for implant removal is specific based on the manufacturer and model of the implant. The inability to identify an implant correctly can lead to increased case complexity, procedure time, procedure cost and bone loss for the patient. The number of revision joint arthroplasty cases worldwide and the number implants available on the market are growing rapidly, leading to greater difficulty in identifying unknown implants. Solution. The solution is a machine-learning based mobile platform which allows for instant identification of the manufacturer and model of any implant based only on the x-ray image. As more surgeons and implant representatives use the platform, the model should continue to improve in accuracy and number of implants recognized until the algorithm reaches its theoretical maximum of 99% accuracy. Market. Multiple organizations have created small libraries of implant images to assist surgeons with manual identification of unknown implants based on the x-ray, however no automated implant identification system exists to date. One of the most financially successful implant identification tools on the market is a textbook of hip implants which sells for a per unit cost of $200. Several free web-based resources also act as libraries for the manual identification of a limited number of arthroplasty implants. A number of academic and private organizations are working on the development of an automated system for implant identification, however none are available to the public. Product. Implant Identifier is mobile application which uses machine-learning to instantly detect the model and manufacturer of any common arthroplasty implant, based only on x-ray. The beta version offers a large library of implants for manual identification and is currently available for free download on iOS and Android. Its purpose is to further develop the model to its maximal theoretical accuracy, prior to official release. The beta version of the application currently has over 15,000 registered users worldwide and has the largest publicly available arthroplasty library available on the market. Over 200,000 implant images have been submitted by users to date. Timescales. The product was initially released in the form of a closed beta which became available to invited guests around 18 months ago. The current version is an open beta which can be downloaded and used by any individual. It was released roughly 12 months ago. The final rendition of the application will allow for free manual identification using the implant library, as well as subscription-based automated implant identification. The implementation, testing and release of this final subscription product is projected to be completed by Q3 2022. Funding. A small number of early investors have funded the initial research and development of the beta product; however, another round of investment will be beneficial in the final evolution of the product. This additional investment round will allow for completion of development of the identification algorithm, product dissemination, customer support, and lasting sustainability of the venture


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 68 - 68
7 Nov 2023
Hohmann E Paschos N Keough N Molepo M Oberholster A Erbulut D Tetsworth K Glat V Gueorguiev B
Full Access

The purpose of this study was to develop a quality appraisal tool for the assessment of laboratory basic science biomechanical studies. Materials andScore development comprised of the following phases: item identification/development, item reduction, content/face/criterion validity, weighting, test-retest reliability and internal consistency. For item identification/development, the panel was asked to independently list criteria and factors they considered important for cadaver study and generate items that should be used to appraise cadaver study quality. For content validity, the content validity ratio (CVR) was calculated. The minimum accepted content validity index (CVI) was set to 0.85. For weighting, equal weight for each item was 6.7% [15 items]. Based on these figures the panel was asked to either upscale or downscale the weight for each item ensuring that the final sum for all items was 100%. Face validity was assessed by each panel member using a Likert scale from 1–7. Strong face validity was defined as a mean score of >5. Test-retest reliability was assessed using 10 randomly selected studies. Criterion validity was assessed using the QUACS scale as standard. Internal consistency was assessed using Cronbach's alpha. Five items reached a CVI of 1 and 10 items a CVI of 0.875. For weighting five items reached a final weight of 10% and ten items 5%. The mean score for face validity was 5.6. Test-retest reliability ranged from 0.78–1.00 with 9 items reaching a perfect score. Criterion validity was 0.76 and considered to be strong. Cronbach's alpha was calculated to be 0.71 indicating acceptable internal consistency. The new proposed quality score for basic science studies consists of 15 items and has been shown to be reliable, valid and of acceptable internal consistency. It is suggested that this score should be utilised when assessing basic science studies