Advertisement for orthosearch.org.uk
Results 1 - 20 of 114
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 46 - 46
1 Dec 2022
Sheridan G Garbuz D Masri B
Full Access

The demand for revision total knee arthroplasty (TKA) has grown significantly in recent years. The two major fixation methods for stems in revision TKA include cemented and ‘hybrid’ fixation. We explore the optimal fixation method using data from recent, well-designed comparative studies. We performed a systematic review of comparative studies published within the last 10 years with a minimum follow-up of 24 months. To allow for missing data, a random-effects meta-analysis of all available cases was performed. The odds ratio (OR) for the relevant outcome was calculated with 95% confidence intervals. The effects of small studies were analyzed using a funnel plot, and asymmetry was assessed using Egger's test. The primary outcome measure was all-cause failure. Secondary outcome measures included all-cause revision, aseptic revision and radiographic failure. There was a significantly lower failure rate for hybrid stems when compared to cemented stems (p = 0.006) (OR 0.61, 95% CI 0.42-0.87). Heterogeneity was 4.3% and insignificant (p = 0.39). There was a trend toward superior hybrid performance for all other outcome measures including all-cause re-revision, aseptic re-revision and radiographic failure. Recent evidence suggests a significantly lower failure rate for hybrid stems in revision TKA. There is also a trend favoring the use of hybrid stems for all outcome variables assessed in this study. This is the first time a significant difference in outcome has been demonstrated through systematic review of these two modes of stem fixation. We therefore recommend the use, where possible, of hybrid stems in revision TKA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 12 - 12
10 Feb 2023
Boyle A Zhu M Frampton C Poutawera V Vane A
Full Access

Multiple joint registries have reported better implant survival for patients aged >75 years undergoing total hip arthroplasty (THA) with cemented implant combinations when compared to hybrid or uncemented implant combinations. However, there is considerable variation within these broad implant categories, and it has therefore been suggested that specific implant combinations should be compared. We analysed the most common contemporary uncemented (Corail/Pinnacle), hybrid (Exeter V40/Trident) and cemented (Exeter V40/Exeter X3) implant combinations in the New Zealand Joint Registry (NZJR) for patients aged >75 years. All THAs performed using the selected implants in the NZJR for patients aged >75 years between 1999 and 2018 were included. Demographic data, implant type, and outcome data including implant survival, reason for revision, and post-operative Oxford Hip Scores were obtained from the NZJR, and detailed survival analyses were performed. Primary outcome was revision for any reason. Reason for revision, including femoral or acetabular failure, and time to revision were recorded. 5427 THAs were included. There were 1105 implantations in the uncemented implant combination group, 3040 in the hybrid implant combination group and 1282 in the cemented implant combination group. Patient reported outcomes were comparable across all groups. Revision rates were comparable between the cemented implant combination (0.31 revisions/100 component years) and the hybrid implant combination (0.40 revisions/100 component years) but were statistically significantly higher in the uncemented implant combination (0.80/100 component years). Femoral-sided revisions were significantly greater in the uncemented implant combination group. The cemented implant and hybrid implant combinations provide equivalent survival and functional outcomes in patients aged over 75 years. Caution is advised if considering use of the uncemented implant combination in this age group, predominantly due to a higher risk of femoral sided revisions. The authors recommend comparison of individual implants rather than broad categories of implants


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 254 - 254
1 Mar 2013
Maruyama M Wakabayashi S Tensho K
Full Access

BACKGROUND. Hybrid total hip arthroplasty (THA) commonly recognized as cementless hemi-spherical acetabular component combined with cemented femoral stem. We have done so called “reverse” hybrid THA with cemented socket and cementless stem and compared with all-cemented THAs. PATIENTS AND METHODS. We have been collecting data on total hip arthroplasty since November, 1993. Reverse hybrid hip replacements were used mainly from February, 2001. We evaluated data on 272 reverse hybrid THAs (223 patients) from this year onward until May, 2010, and compared the results with those from 283 all-cemented THAs (237 patients) between 1993 and May, 2010. Eighty percent or more of patients had diagnosed as secondary osteoarthritis of the hip joint due to dysplasia in our hospitals. Highly cross linked ultrahigh molecular polyethylene (CLP) socket was introduced in October, 1999. We used conventional (not cross linked polyethylene) socket for 82 hips (cemented group-1) operated before October, 1999 and CLP socket for 201 hips (cemented group-2) in all-cemented cases. We used the Kaplan-Meier method for estimation of prosthesis survival and relative risk of revision. The endpoint was radiological loosening or revision. Socket linear wear rates were also assessed in radiographically. Clinical assessment was performed using the Japanese Orthopedic Association (JOA) scores and Merle d'Aubigne & Postel scores. RESULTS. We have 12 hips (11 sockets and 1 stem) with radiological loosening in all cemented series and no hips in reverse hybrid series. A case with stem loosening in all cemented THAs had fractured stem without bony support due to massive osteolysis caused by heavy polyethylene wear. All of the loosening cases had conventional polyethylene socket and six of them were revised. Socket linear wear rates were calculated as 0.171 +/− 0.069, 0.030+/− 0.027, and 0.035+/− 0.026 mm per year for cemented group-1, group-2 and reverse hybrid cases, respectively. Clinical scores were significantly improved those at the time of final follow up compared with those of preoperative assessment. There were significant differences between conventional and cross linked polyethylene cases. We found no significant difference survival to that from cemented THR at 12 years (all cemented: 96.1% (95% CI: 92.7–99.1); reverse hybrid: 100%) (Figure 1). DISCUSSION AND CONCLUSION. With a follow-up of up to 12 years, reverse hybrid THAs performed well, and similarly to all-cemented THRs from the same time period. The reason for loosening was mainly bone loss and osteolysis due to polyethylene socket wear. It is no problem if the stem was installed by cemented or cementless fixation, because the rates of stem loosening were very low in the current study. The reverse hybrid method might therefore be an alternative to all-cemented THR. Longer follow-up time is needed to evaluate whether reverse hybrid hip arthroplasty has any advantages over all-cemented THA


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 64 - 64
1 Apr 2018
Shon W Sonje P Naik GL
Full Access

Background. Polyethylene wear in both cemented and uncemented total hip arthroplasty (THA) lead to generation of particles with their access to the interface which has been responsible for periprosthetic osteolysis and subsequent loosening of cup and stem. Many studies have been published studying the pattern of polyethylene wear and its relation to the type of implant (cemented/ uncemented cup or ceramic/metal head) used. No study in our knowledge has strictly focused on the effect of cemented versus uncemented stem on the polyethylene wear rates. We tried to compare the polyethylene wear rates reckoned with software (Poly Ware REV 7) of ultra high molecular weight polyethylene (UHMWPE) in hybrid and uncemented THA and its effect on complications of total hip replacements. Method. We retrospectively reviewed pre-matched 56 patients in uncemented group with 112 patients in hybrid group on the basis of polyethylene wear rate, revision rates and clinical issues, with mean follow up of 9.42 and 7.25 years (yrs.) respectively. Results. Mean polyethylene wear rate in uncemented group was 0.048 milli metres per year (mm/yr.) and it was 0.082 mm/yr. in hybrid. Wear rate in hybrid group ceramic head (0.072mm/yr.) was significant when compared to wear rate ceramic head in uncemented group (0.053mm/yr.), also we found significant difference of poly wear in the metallic group as well. There was no difference in stem loosening and cup osteolysis in low wear (<.05 mm/yr.) and high wear group (>.05mm/yr.) in both uncemented and hybrid THA. Conclusion. The revision was significantly higher in uncemented group but when adjusted with the age, it is equivocal. We found significant difference in polyethylene wear rates, but no significant difference in clinical performance and revisions among the two groups of uncemented THA and hybrid THA when compared on a mid-term 8 to 10 yrs. Follow up. Keywords. Total Hip Arthroplasty; Polywear; Uncemented THA; Hybrid THA


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 77 - 77
1 Apr 2019
Sawada N Yabuno K Ikeda S Kanazawa M
Full Access

INTRODUCTION. In gap balancing technique, we decided the femoral component rotation according to the ligament balance in flexion. Component and limb alignment are important considerations during TKA. Three-dimensional positioning of TKA implants and exact mechanical axis has an effect on implant loosening, polyethylene stresses, and gait. According to the recent report, the navigation system made it possible to achieve aligned implants more than conventional TKA. Hybrid Navigation technique which is our procedure is combination of navigation system and modified gap technique. In other words, exact mechanical axis is gained by navigation system, stable stability of knee joint is gained by modified gap technique. PURPOSE. The purpose of this study is to carry out clinical evaluation and image evaluation of the patients who underwent hybrid navigation technique TKA. METHODS. We performed TKA using the hybrid navigation technique in 100 knees from April 2012 to April 2015. We evaluated hybrid navigation TKA which we were able to follow up more than five years. 33 knees were available for follow up. We investigated the mid-term results of TKA after a mean follow up period of 5 years and 8 months. We evaluated range of motion(ROM), Japan Orthopaedic Association (JOA)score, complications, revision rate as clinical evaluations. And we evaluated radiolucent line(RLL), loosening in X-ray, implantation accuracy in computed tomography(CT) as image evaluations. Surgical technique was that the knees were exposed using a medial parapatellar approach without patella turnover, and the anterior and posterior cruciate ligaments were resected. And next osteotomy distal femur and proximal tibia using CT-free Navigation, step-wise medial soft tissue release was performed to make the rectangular extension joint gap using gap tensor space (off set balancer) at 40 pounds of distraction force. Flextion gap was made at the same distraction force, thereby we determined external rotation angle of femur osteotomy in a patella reduction position. CT of the whole leg was taken preoperation and postoperation the first postoperative week in all cases. RESULTS. In CT evaluation, coronal and sagittal alignments of femoral componet were mean 90.92° and mean flex 3.02°. These alignment of tibial componet were 90.54° and mean posterior slope 3.0°. Outliers(>3°)of coronal aligment were 6% (2 knees)in femoral componet, and 6%(2 knees) in tibial componet. In clinical evaluation, mean preoperative ROM(flex) was 105 degrees which improved 122 degrees at final follow up. Mean preoperative JOA score was 46.3 which improved 85.8 at final follow up. In image evaluation, there were no incidence of component loosening(RLL>2mm). We experienced two complications(1 deep infection and 1 intraoperative fracture), but there were no postoperative fracture and DVT/PE. The revision arte was 3%(1 knee) due to deep infection. DISCUSSION AND CONCLUSION. Mid-term postoperative results has shown a good prognosis. We will not understand that we do not observe long-term results in future, neverthless we believe that this technique should be considered as an alternative means of conducting TKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLIV | Pages 51 - 51
1 Oct 2012
Claasen G Martin P Picard F
Full Access

Over the past fifteen years, computer-assisted surgery systems have been more commonly used, especially in joint arthroplasty. They allow a greater accuracy and precision in surgical procedures and thus should improve outcomes and long term results. New instruments such as guided handheld tools have been recently developed to ultimately eliminate the need for drilling/cutting or milling guides. To make sure that the handheld tool cuts and/or drills in the desired plane, it has to be servo-controlled. For this purpose, the tool joints are actuated by computer-controlled motors. A tracking system gives the tool position and orientation and a computer calculates the corrections for the motors to keep the tool in the desired plane. For this servo-control, a very fast tracking system would be necessary. It should be fast enough to follow human motion. Current optical tracking systems used for computer-assisted surgery have a bandwidth of about 10–60 Hz [3]. For servo-control, a bandwidth of about 200–300 Hz would be required to be faster than human reaction; the latency of the system should also be small, about 2–3 ms. Optical tracking systems with a higher bandwidth exist but are too expensive for applications in surgery; besides the latency – due to the complex computer vision treatment involved – is too big. We have developed a hybrid tracking system consisting of two cameras pointed at the operating field and a sensor unit which can be attached to a handheld tool. The sensor unit is made up of an inertial measuring unit (IMU) and numerous optical markers. The data from the IMU (three gyroscopes and three accelerometers placed such that their measurement axes are perpendicular to each other) and the marker images from the cameras looking at the optical markers are fed to a data fusion algorithm. This algorithm calculates the position and the orientation of any handheld tool. It can do so at the higher of the two sensor sample rates which is the IMU sample rate in our case. Our experimental setup consists of an ADIS 16355 IMU which runs at a sample rate of 250 Hz and a pair of stereo cameras which are sampled at 16.7 Hz. The data collected from these sensors are processed offline by the data fusion algorithm. To compare the results of our hybrid system to those of a purely optical tracking system, we use only the marker image data to recalculate the sensor unit's position by triangulation. The experiment we conducted was a fast motion in a horizontal direction starting from a rest position. The sensor unit position was calculated by the hybrid system and by the optical tracking system using the experimental data. The fast motion started right after the optical sample at t1 and the hybrid system detects it at once. The optical tracking system, on the other hand, only sees the motion at the next optical sample time t2. These results show that our hybrid system is able to follow a fast motion of the sensor unit whereas a purely optical tracking system is not. The proposed hybrid tracking system calculates position and orientation of any handheld tool at a high frequency of 250 Hz and thus makes it possible to servo-control the tool to keep it in the desired plane. Several similar systems fusing optical and inertial data have been described in the literature. They all use processed optical data, i.e. 3D marker positions. Our algorithm uses raw image data to considerably reduce computation time. This hybrid tracking system can be used with any handheld tool developed to substitute existing drilling, cutting or milling instruments used in orthopaedic surgery and particularly in arthroplasty. The sensor unit can be easily implemented into an existing optical tracking system. For the surgeon, the only change is an additional small inertial sensor besides the optical markers already attached to the tool. The authors would like to thank the AXA Research Fund for funding G.C. Claasen's work with a doctoral grant and Guillaume Picard for his contributions to the experimental setup


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 202 - 202
1 Mar 2013
Ishimaru M Hino K Miura H
Full Access

Introduction. The efficacy and accuracy of computer navigation systems in total knee arthroplasty (TKA) have been proven in recent years. However, potential disadvantages associated with navigation systems, such as increased surgical time and registration errors, have been reported. Currently, we use a navigation system only for the femoral side. We use the conventional extramedullary guide system for the tibial side (hybrid navigation method) because we have increased the accuracy of tibial positioning in the coronal plane with the conventional system by considering the following key points. (1) Set the extramedullary alignment guide to avoid the rotational mismatch between the proximal part of the tibia and the ankle joint. (2) Insert the tibial component along the AP axis of the resected surface. (3) Remove the protruding bone at the antero-lateral edge of the tibia to obtain the flat, resected surface of the tibia. The purpose of this study was to determine the accuracy of the hybrid navigation method. Methods. We compared the postoperative alignment of 60 TKAs implanted using the conventional alignment guide system with 30 TKAs implanted using the hybrid image-free navigation method. The average age was 74.2 (range, 50 to 85) years in the conventional group and 73.6 (range, 51 to 84) years in the hybrid group. The intramedullary alignment guide was used for the femur in the conventional group. The knees were evaluated using full-length, weight-bearing anteroposterior radiographs. Results. For the conventional group, the mean coronal tibial component angle was 89.9 ± 1.09 degrees (range, 88.0 to 92.0 degrees) (Fig. 1b). The ideal angle within 3 degrees for the tibial component was obtained in 100% of the cases. The mean posterior inclination angle was 83.7 degrees. The mean coronal femoral angle was 90.5 ± 2.06 degrees (range, 84.0 to 96.0 degrees) (Fig. 1a). The ideal angle within 3 degrees for the femoral component was obtained in 85.0% of the cases. For the hybrid navigation group, the mean coronal tibial component angle was 89.6 ± 0.73 degrees (range, 88.0 to 91.0 degrees) (Fig. 2b). The ideal angle within 3 degrees for the tibial component was obtained in 100% of the cases. The mean coronal femoral component angle was 89.4 degrees (range, 86.0 to 92.0 degrees) (Fig. 2a). The ideal coronal angle within 3 degrees for the femoral component was obtained in 96.7% of the cases. Discussion and Conclusion. Our results demonstrated the accuracy of coronal tibial component positioning with the conventional extramedullary alignment guide system by considering the key points described above. However, the accuracy of femoral component positioning with the conventional intramedullary rod is limited. Therefore, the hybrid navigation method could be an alternative to reduce surgical time while maintaining the accuracy of the tibial component positioning. In conclusion, we recommend the hybrid navigation method in total knee arthroplasty


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 10 - 10
1 Oct 2014
Richter P Schicho A Gebhard F
Full Access

Minimally invasive placement of iliosacral screws (SI-screw) is becoming the standard surgical procedure for sacrum fractures. Computer navigation seems to increase screw accuracy and reduce intraoperative radiation compared to conventional radiographic placement. In 2012 an interdisciplinary hybrid operating theatre was installed at the University of Ulm. A floor-based robotic flat panel 3D c-arm (Artis zeego, Siemens, Germany) is linked to a navigation system (BrainLab Curve, BrainLab, Germany). With a single intraoperative 3D scan the whole pelvis can be visualised in CT-like quality. The aim of this study was to analyse the accuracy of SI-screws using this hybrid operating theater. 32 SI-screws (30 patients) were included in this study. Indications ranged from bone tumour resection with consecutive stabilisation to pelvic ring fractures. All screws were implanted using the hybrid operating theatre at the University of Ulm. We analysed the intraoperative 3D scan or postoperative computed tomography and classified the grade of perforation of the screws in the neural foramina and the grade of deviation of the screws to the cranial S1 endplate according to Smith et al. Grade 0 stands for no perforation and a deviation of less than 5 °. Grade 1 implies a perforation of less than 2 mm and a deviation of 5–10°, grade 2 a perforation of 2–4 mm and a deviation of 10–15° and grade 3 a perforation of more than 4 mm and a deviation of more than 15°. All patients were tested for intra- and postoperative neurologic complications and infections. The statistical analysis was executed using Microsoft Excel 2010. 32 SI-screws were implanted in the first 20 months after the hybrid operating theatre had been established in 2012. All 30 patients were included in this study (15 men, 15 women). The mean age was 59 years ±23 (13–95 years). 20 patients received a single screw in S1 (66.7%), 1 patient 2 unilateral screws in S1 and S2 (3.3%), one patient 2 bilateral screws in S1 (3.3%) and 8 patients a single screw stabilising both SI-joints (26.7%). 27 screws showed no perforation (84.4%), 1 screw a grade 1 perforation (3.1%) and 4 screws a grade 2 perforation (12.5%). There was no grade 3 perforation. Furthermore there was no perforation of the neural foramina or the ventral cortex in the axial plane of the SI-screws stabilising one SI-joint (24 screws). Only single SI-screws bridging both SI joints showed a perforation of the neural foramina (37% grade 0, 12.5% grade 1, 50% grade 2, 0% grade 3). In the frontal plane 23 screws (71.9%) showed a deviation of less than 5°. In 5 screws a grade 1 deviation (15.6%) and in 4 screws a grade 2 deviation (12.5%) could be found. There was no grade 3 deviation. There were no infections or neurological complications. The high image quality and large field of view in combination with an advanced navigation system is a great benefit for the surgeon. All SI-screws stabilising only one joint showed completely intraosseous placement. Single SI-screws bridging 2 SI-joints intentionally perforated the neural foramina ventrally in 5 cases because of dysmorphic sacral anatomy. This makes image-guided implantation of SI-screws in a hybrid operating theatre a very safe procedure


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 17 - 17
1 May 2016
Sawada N Yabuno K Kanazawa M
Full Access

INTRODUCTION. Soft-tissue balancing of the knee is fundamental to the success of total knee arthroplasty(TKA). Preparing rectangular extension and flexion joint gaps in the most important goal in TKA, because it facilitates functional stability of the knee. In gap balancing technique, we decided the femoral component rotation according to the ligament balance in flexion. Component and limb alignment are important considerations during TKA. Three-dimensional positioning of TKA implants and exact mechanical axis has an effect on implant loosening, polyethylene stresses, and gait. According to the recent reports, the navigation system made it possible to achieve aligned implants more than conventional TKA. Hybrid Navigation technique which is our procedure is combination of navigation system and modified gap technique. In other words, exact mechanical axis is gained by navigation system, stable stability of knee joint is gained by modified gap technique. PURPOSE. The purpose of this study is to carry out clinical evaluation and image assenssment using computed tomography (CT) of the patients who underwent hybrid navigation technique TKA. METHODS. We performed TKA using the hybrid navigation technique in 100 knees from April 2012. Surgical technique was that the knees were exposed using a medial parapatellar approach without patella turnover, and the anterior and posterior cruciate ligaments were resected. And next osteotomy distal femur and proximal tibia using CT-free Navigation, step-wise medial soft tissue release was performed to make the rectangular extension joint gap using gap tensor space(off set balancer) at 40 pounds of distraction force. Flextion gap was made at the same distraction force, thereby we determined external rotation angle of femur osteotomy in a patella reduction position. See Figure 1. CT of the whole leg was taken preoperation and postoperation in all cases. RESULTS. Coronal and sagittal alignments of femoral componet angle were mean 91.05° and mean flex anglewere 2.98°. These alignment of tibial componet angle were 91.08° and mean posterior slope angle were 3.38°. Outliers(>3°)of coronal aligment were 9% in femoral componet, and 8% in tibial componet. Mean operation times(skin incision to skin closure) were 108 minutes. We experienced two complications(1 deep infection and 1 peroneal nerve palsy), but there were no intraoperative fracture, postoperative fracture and DVT/PE. DISCUSSION AND CONCLUSION. 100 patients underwent hybrid navigation TKA which has advantage of both navigation and gap technique. CT assessment of components has shown good results. (outlier>3°femoral component: 9%, tibial component 8%) Short-term postoperative results has shown a good prognosis. We will not understand that we do not observe long-term results in future, neverthless we believe that this technique should be considered as an alternative means of conducting TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 65 - 65
1 May 2016
Murakami T Yarimitsu S Nakashima K Sakai N Yamaguchi T Sawae Y Suzuki A
Full Access

Total hip and knee joint prostheses composed of ultra-high molecular weight polyethylene (UHMWPE) and metal or ceramics have been widely applied. Efficacious treatments such as crosslinking, addition of vitamin E and phospholipid coating to UHMWPE have reduced wear and extended the life of joint prostheses. However, wear problems have not yet been completely solved for cases involving severe conditions, where direct contact can occur in mixed or boundary lubrication. In contrast, extremely low friction and minimum wear are maintained for a lifetime in healthy natural synovial joints containing articular cartilage with superior lubricity. Accordingly, joint prostheses containing artificial hydrogel cartilage with properties similar to those of articular cartilage are expected to show superior tribological functions. In establishing the function of artificial hydrogel cartilage as a novel material for joint prostheses, the tribological properties of hydrogel materials used and synergistic performance with synovia constituents are both important. In this study, the lubrication ability and wear resistance properties of poly(vinyl alcohol) (PVA) hydrogels were evaluated by differences in friction and wear properties in reciprocating tests lubricated with saline and simulated synovial fluid. Biphasic finite element (FE) analysis was applied to elucidate the role of biphasic lubrication mechanism in hydrogels. As biocompatible artificial hydrogel cartilage materials, three PVA hydrogels were prepared using the repeated freeze-thawing (FT) method, the cast-drying (CD) method and the hybrid method for laminated gel of FT on CD, which are physically crosslinked with hydrogen bonding but differ in terms of structure and mechanical properties. First the frictional behavior of the ellipsoidal PVA hydrogel specimens was examined in reciprocating tests against a glass plate, which corresponds to simplified knee prosthesis model (Fig.1), with a sliding speed of 20 mm/s under constant continuous loading. As shown in Fig.1, the three hydrogels exhibited different frictional behaviors in a saline solution. It is noteworthy that the hybrid gel maintained very low friction until the end of test. The CD gel showed slightly higher friction and a gradual increase. Meanwhile, the FT gel showed initial medium friction and a gradual increase. Time-dependent frictional behavior was clarified with biphasic lubrication mechanism via biphasic FE analysis. Contact surface observation showed minimal wear without scratches for hybrid gel in saline. Next, simulated synovial fluid composed of 0.5 wt% hyaluronic acid (HA, molecular weight: 920,000 Da), 1.4 wt% albumin, 0.7 wt% gamma-globulin and 0.01 wt% L-alpha dipalmitoylphosphatidylcholine (DPPC), was used to evaluate tribological performance of these gels in physiological condition. As shown in Fig.2, PVA hydrogels in simulated synovial fluid exhibited very low friction, with hybrid gel showing an extremely low friction coefficient of 0.003 in the test. These friction differences were sustained by biphasic FE analysis. Hybrid gel further showed very little wear (Fig.3), which is favorable in terms of hydrogel durability. These results indicate the importance of superior lubricity and wear resistance of PVA hybrid gel for the clinical application of artificial hydrogel cartilage in joint prostheses


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 146 - 146
1 Jan 2016
Lee MC Lee S Park IW Ro DH Kim KB Chung KY Seong SC
Full Access

Purpose. Although the use of stems in revision total knee arthroplasty (RTKA) enhances survival by improving the stability of implant, questions as to the optimal fixation method as well as the vertical extent of the cement, remain unanswered. This study aimed 1) to determine the correlation between the vertical extent of cement and implant loosening; and 2) to determine the minimum cementing extent for a stable implant in revision TKA with a hybrid technique. Materials and Methods. We retrospectively analyzed 109 stemmed RTKAs with average follow-up of 63 months. In each case, a single varus-valgus constrained implant was used and fixed with a hybrid technique. During surgery, stem was partially covered with cement beyond stem-implant junction. Stability of implant was evaluated according to the modified Knee Society Radiographic Scoring System. Cementing extent was defined as length from implant base to the end of the radiopaque line around the stem. The correlation between the vertical cementing extent and implant stability was analyzed, and the minimal vertical cementing extent for a stable implant was evaluated with a scatter plot. Results. The vertical cementing extent was longer in stable implants (femur: P=.002, tibia:P=.007) and the correlation between the vertical cementing extent and implant stability was significant (femur:P<.001, tibia:P=.001). Logistic regression analysis found that the risk of loosening was 8.7 times higher if the cementing extent was less than 40mm (tibia=16.1 times). The minimal vertical cementing extent for a stable implant in femur was estimated to be 65mm for middle stem (40% of total implant length) and 50mm for long stem (25% of total implant length). For tibia, it was 55mm for middle stem (45% of total implant length) and 40mm for long stem (25% of total implant length). Conclusion. We confirmed that a negative correlation exists between the radiolucent line and the cementing extent in stemmed revision TKA with a hybrid fixation technique. We could expect a durable implant in revision TKA with a minimal vertical cementing extents and it was 65mm for the femur and 55mm for the tibia. Level of Evidence. IV, Cases series


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_III | Pages 144 - 144
1 Feb 2012
Pollard T Baker R Eastaugh-Waring S Bannister G
Full Access

Metal-on-metal resurfacing offers an alternative strategy to hip replacement in the young active patient with severe osteoarthritis of the hip. The aim of this study was to compare functional outcomes, failure rates and impending revisions in hybrid total hip arthroplasties (THAs) and Birmingham Hip Resurfacings (BHRs) in young active patients. We compared the 5-7 year clinical and radiological results of the metal-on-metal BHR with hybrid THA in two groups of 54 hips each, matched for sex, age, body mass index and activity. Function was excellent in both groups as measured by the Oxford hip score (median 13 in the BHRs and 14 in the THAs, p=0.14), but the resurfacings had higher UCLA activity scores (median 9 v 7, p=0.001) and better EuroQol quality of life scores (0.90 v 0.78, p=0.003). The THAs had a revision or intention to revise rate of 8% and the BHRs 6%. Both groups demonstrated impending failure on surrogate end-points. 12% of THAs had polyethylene wear and osteolysis under observation, and there was femoral component migration in 8% of resurfacings. Polyethylene wear was present in 48% of hybrid hips without osteolysis. Of the femoral components in the resurfacing group which had not migrated, 66% had radiological changes of unknown significance (classification proposed). In conclusion, the early to mid-term results of resurfacing with the BHR appear at least as good as those of hybrid THA. Only by longer term follow-up will we establish whether the change of practice recorded here represents a true advance


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 45 - 45
1 May 2016
So K Kuroda Y Goto K Matsuda S
Full Access

Introduction. Total hip arthroplasty (THA) for a highly dislocated hip can be problematic and technically challenging. Our previous study on cemented THA with subtrochanteric femoral shortening osteotomy revealed a high incidence (20%) of non-union. Therefore, in 2008, we introduced reverse hybrid THA using S-ROM stem for the treatment of a highly dislocated hip. The purpose of this study was to assess the short-term clinical outcomes of this new method. Patients and methods. Between 2008 and 2014, 13 consecutive reverse hybrid THAs were performed on nine female patients with highly dislocated hips. The average age at the time of operation was 66 years (range, 55–85 years). The acetabular component was fixed in the true acetabulum with bone cement. Transverse osteotomy was performed below the lesser trochanter to shorten the femur and to prevent over-lengthening. The proximal sleeve of the S-ROM stem was then fixed within the proximal fragment, and the distal fin provided rotational stability of the distal fragment. Thus, the two fragments were fixed to each other with the S-ROM stem, and the resected segment was longitudinally cut for grafting at the junction. The postoperative follow-up period was an average of 4 years (range, 1–7 years), and no patients were lost. Preoperative and final Japanese Orthopaedic Association (JOA) hip score, operation time, bleeding amount, intraoperative and postoperative complications, bone healing at the osteotomy site, implant loosening, and revision surgery were retrospectively investigated. Results. The mean JOA hip score improved from 56 points preoperatively to 82 points postoperatively. The operation time and amount of bleeding were an average of 208 min and 643 g, respectively. The mean length of femoral resection was 4 cm (range, 2–6 cm), and the tip of the greater trochanter migrated an average distance of 7 cm (range, 5–9 cm) distally. The calculated limb lengthening was an average of 3 cm (range, 2–4 cm). Intraoperative fracture was seen in two patients, but no repeat operation was required. Two patients experienced postoperative dislocation in their hips, but additional surgery was not necessary. Postoperative nerve palsy did not occur in any patient, and all the osteotomy sites showed complete bone union. There was no implant loosening seen in any patient, and there was also no need for revision surgery. Discussion and conclusions. To achieve satisfactory outcomes with this method, resection of necessary and sufficient length of femur and accomplishment of adequate fixation between the proximal and distal fragments are necessary. In this study, dislocation occurred in two patients, and no nerve palsy was seen. Larger femoral heads may be recommended to eradicate dislocations. In cases where metaphysis of the femur is hypoplastic or the medullary canal is wide, reaming and stem insertion should be carefully performed. In this series, no additional surgery was required for the intra- and post-operative complications, and the osteotomy sites achieved bone union in all patients. Therefore, we recommend the use of this method, although longer follow-up periods are necessary


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 4 - 4
1 Nov 2015
Seitz W
Full Access

Hybrid fixation of total joint arthroplasty has been an accepted form of surgical approach in multiple joints. Principles of implant fixation should focus on durability providing secure long-term function. To date there is no conclusive evidence that pressed fit humeral stem fixation has an advantage over well-secured cemented humeral fixation. In fact, need for revision arthroplasty due to inadequate implant fixation has almost universally revolved around failure of cement fixation and loosening of the glenoid component. A case will be made based on 30 years of experience of one surgeon performing total shoulder arthroplasty using secure modern cement fixation techniques of humeral components. More recently, over the last 10 years, extremely high rate of durable secure glenoid implant fixation has been achieved using tantalum porous anchorage with polyethylene glenoid components. This has resulted in no cases of loosening of glenoid fixation and only 1 case of glenoid component fracture with greater than 95% survivorship over a 10 year period. A combination of well cemented humeral stem and trabecular metal anchorage of the glenoid has provided durable lasting function in primary total shoulder arthroplasty


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 83 - 83
1 Feb 2017
Kosse N Van Hellemondt G Wymenga A Heesterbeek P
Full Access

Introduction. The number of revisions of total knee replacements (TKR) increases annually. Because of reduced bone stock, stable fixation of the implant is important. The femoral and tibial components are usually cemented whereas stems can be placed either cemented or press-fit (hybrid construct). To assess the stability of revision TKR with either cemented or hybrid places implants a randomized controlled trial (RCT) was executed, by using radiostereometric analysis (RSA). The short-term results of this RCT showed no differences between the two groups in stability and clinical outcomes. Although there were no clinical or radiological signs of loosening, both groups showed implants micromotion > 1 mm or degree. These findings might indicate the possibility of loosening later in time; therefore, the current study investigated the stability of cemented versus hybrid-placed revision TKR 6.5 years after surgery. Additionally, clinical results were evaluated. Methods. Of the 32 patients in the original RCT, 23 (12 cement, 11 press-fit) were available for mid-term follow-up measures. RSA images taken at baseline, 6 weeks, 3, 6, 12 and 24 months postoperatively were used from the previous study. New RSA images were taken at median 6.5 years (range 5.4–7.3) postoperatively. Stability of the femoral and tibial implants was assessed by using model-based RSA software (RSAcore, Leiden, The Netherlands) to determine micromotion. Clinical results were evaluated using the Knee Society Score (KSS), the Knee injury and Osteoarthritis Outcome Score (KOOS), active flexion, and VAS pain and satisfaction. Stability and clinical outcome were compared between the two groups using independent t-tests or Mann-Whitney U tests when applicable. Results. The median total translation at 6.5 years was 0.37 (0.13–1.96) mm and median total rotation 0.62 (0.11 – 2.81)° for the femoral component. For the tibia component the median total translation was 0.41 (0.10 – 1.04) mm and the median total rotation 0.61 (0.09 – 1.99)°. There were no differences in total translation and total rotation of the femoral and tibial component between the two groups. Additionally, none of the clinical scores differed between the groups. Interestingly, in the group with cemented stems five tibia implants showed > 1 mm or degree migration compared to zero in the hybrid group (p=0.02; Figure 1). Conclusion. There was no difference in stability and clinical outcome between fully cemented and hybrid-placed revision TKR 6.5 years postoperatively. Until now micromotion >1 mm or degree in the tibial components of the cemented group has not yet resulted in re- revisions. The patients will be followed to examine the consequences of these amounts of micromotion in this type of implant in the long-term. Figure 1. Scatter plot of total translation (x-axis) and total rotation (y-axis) for the tibia component at 6.5 years follow-up for fully cemented and hybrid-placed revision TKA


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_1 | Pages 81 - 81
1 Jan 2013
Evans J Giddins G Miles T
Full Access

Aim. The purpose of this study was to develop and test the utility of a hybrid barbed-suture in the core repair of digital flexor tendon injuries. Despite offering advantages over traditional suture methods, concerns over the cost, strength to failure and biocompatibility of barbed sutures have hindered their development. Moreover the recent designs have been very complex. We have attempted to develop and test a simple barbed suture, to assess it's viability in flexor tendon repair and in particular to establish a baseline for the efficacy and modes of failure barbed sutures, in order to help provide a basis for future research. Method. The barbed suture device was constructed by inserting 3 steel barbs into the weaved construct of a braided polyester suture. The barbed sutures were inserted into 28 porcine lateral extensor tendons yielding a single sided core repair. Tensile testing of the repair was undertaken using a tabletop load frame with the distal end of the tendon fixed in a cryo clamp. Linear load testing to failure was undertaken. Maximum load, repair excursion and repair stiffness were recorded. Results. The barbed suture technique demonstrated a maximum load to failure of 40.4±16.4N. The excursion of the repair at failure point was 31.4±11.6mm. The stiffness of the repair derived from the linear elastic portion of the load displacement curve was 1.0±0.6N/mm. Conclusions. Use of this barbed suture construct offers a fast, easily applied method of flexor tendon repair. The maximum load to failure is comparable to the commonly used non-barbed suture methods. The suture excursion and stiffness findings suggest gap formation at low loads. Failure of the barbed suture seemed to be resisted by the collagen links between longitudinal tendon fibres. Further developments of this very modifiable construct may lead to a viable alternative to the current repair techniques


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 28 - 28
1 Oct 2014
Zhang Y Wörn H
Full Access

Osteotomy in spine and skull base surgery is a highly demanding task that requires very high precision. Compared to conventional surgical tools, laser allows contactless hard tissue removal with fewer traumas to the patient and higher machining accuracy. However, a key issue remains unsolved: how to terminate the ablation while the underlying critical soft tissue is reached?. Our research group has realised a closed-loop control of a CO. 2. -laser osteotomy system under the guidance of an optical coherence tomography (OCT). The OCT provides three-dimensional information about the microstructures beneath the bone surface with a resolution on micrometre scale and an imaging depth of about 0.5 mm. The OCT and CO. 2. -laser systems are integrated using a coaxial setup and a registration between their working spaces (mean absolute error 19.6 μm) was performed. The laser ablation and OCT scan are performed in turn. After correction of image distortions and speckle noise reduction, the position of the critical structure can be segmented in the enhanced OCT scans. The laser parameters for the next round of ablation are foresightedly planned based on the overlying residual bone thickness. After patient motion compensation by tracking artificial landmarks in the OCT scans (accuracy: RMS 27.2 μm), the ablation pattern can be precisely carried out by the CO. 2. -laser. The system was evaluated by performing laser cochleostomy on native porcine cochlea and mean ablation accuracy of 30 μm has been achieved. However, for narrow incisions that are only several tens of micrometres wide, very few pixels are visible beneath the incision bottom in the OCT and a robust segmentation of the critical structure is impossible. We are now developing a hybrid control system, which monitors the ablation-induced acoustic emission (AE) as a secondary control mechanism in addition to the OCT. When a pre-defined “switching” depth is reached, the AE-based control module is activated. Instead of analysing the acquired signals with conventional Fourier transform, a wavelet transform-based approach has been developed, which compares the correlation coefficients of the wavelet spectra of successive laser pulses. At the transition from bone tissue to the underlying soft tissue layer, a significant change in the coefficients can be observed, which is regarded as the signal for terminating the ablation. In order to keep the injury to the soft tissue layer to a minimal level, the laser energy is reduced after the switching. Preliminary experiments revealed that the wavelet-based approach is capable of controlling the ablation using pulses with extremely low energy down to 0.04mJ/pulse, resulting in an injured tissue layer of less than 10 μm. We expect to achieve the ablation accuracy on tens of micrometre scale using the proposed hybrid control mechanism


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 4 - 4
1 Sep 2012
Bolland B Culliford D Langton D Millington J Arden N Latham J
Full Access

This study reports the mid-term results of a large bearing hybrid metal on metal total hip replacement (MOMHTHR) in 199 hips (185 patients) with mean follow up of 62 months. Clinical, radiological, metal ion and retrieval analysis were performed. Seventeen patients (8.6%) had undergone revision, and a further fourteen are awaiting surgery (defined in combination as failures). Twenty one (68%) failures were females. All revisions and ten (71%) awaiting revision were symptomatic. Twenty four failures (86%) showed progressive radiological changes. Fourteen revision cases showed evidence of adverse reactions to metal debris (ARMD). The failure cohort had significantly higher whole blood cobalt ion levels (p=0.001), but no significant difference in cup size (p=0.77), inclination (p=0.38) or cup version (p=0.12) compared to the non revised cohort. Female gender was associated with increased risk of failure (p=0.04). Multifactorial analysis demonstrated isolated raised Co levels in the absence of symptoms or XR changes were not predictive of failure (p=0.675). However the presence of pain (p<0.001) and XR changes (p<0.001) in isolation were significant predictors of failure. Wear analysis (n=5) demonstrated increased wear at the trunnion/head interface (mean out of roundness measurements 34.5 microns (normal range 8–10 microns) with normal wear levels at the articulating surfaces. Macroscopically corrosion was evident at the proximal and distal stem surfaces. Cumulative survival rate, with revision for any reason was 92.4% (95%CI: 87.4–95.4) at 5 years. Including those awaiting surgery, the revision rate would be 15.1% with 89.6% (95% CI: 83.9–93.4). Cumulative survival at 5 years. This MOMHTHR series has demonstrated unacceptable high failure rates with evidence of high wear at the head/trunnion interface and passive corrosion to the stem surface. Female gender was an independent risk factor of failure. Metal ion levels remain a useful aspect of the investigation work up but in isolation are not predictive of failure


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 217 - 217
1 Jun 2012
Shon WY Chotai P Siddaraju VK
Full Access

Purpose. In an effort to increase the durability of cemented total hip arthroplasties (THA), femoral stems were precoated using polymethlymethacrylate (PMMA). One such design is Harris precoat plus and centralign design (Zimmer, Warsaw, Indiana). The reports on these particular designs are variable, ranging from good survival to early failures, studied over short to medium term. Early failures have been attributed, most of the time to debonding at cement-bone interface. In view of lack of long term and variable results, we reviewed the results of primary hybrid THA performed during October 1990 to December 1995, using a PMMA coated, cemented femoral prosthesis and contemporary cementing techniques. Materials and Methods. 121 patients (136 hips) underwent primary THA using one of the precoated femoral stems during the study period. Thirty-five patients (36 hips) died and 23 patients (23 hips) were lost to follow-up due to some reasons. Two hips (2 patients) were revised for postoperative infection and hence, not included in study. Collectively, 75 hips (61 patients) were available for clinical and radiological reviews until the last follow-up, with an average follow-up period of 15.5 years (range, 14 to 18.3 years). The average age of the patients at the time of the index surgery was 53.6 years (range, 24 to 82 years). There were 43 males (55 hips) and 18 females (20 hips). Acetabular components used in these 75 hips were Harris Galante porous (HGP) cups in 69 hips and CLS Expansion cup (Protek, AG, Bern) in six hips. The mean age of 61 patients (75 hips) who were available for latest follow-up at December 2009, was 46 years (range, 22-65 years). Third generation cementing techniques and distal cement plug but no centralizer was used in all cases. All surgeries were performed by same surgeon at a single institute. Results. 23 femoral stems were revised, 20 for aseptic loosening (8 Precoat plus and 12 Centralign) and 3 for periprosthetic fracture with loosening (1 Precoat plus and 2 Centralign). The cementing of the femoral stem was grade A in 29 hips (39%), grade B in 16 (21%), C1 in 6 (8%) and grade C2 in 24 (32%). 21 of 24 hips which showed definitive loosening in radiogram had had cement grade C2 cementing. There were 22 acetabular revisions. 11 hips underwent isolated liner exchange for severe wear and osteolysis and in remaining 11 hips, complete acetabular component revision was performed. Indications for acetabular component revisions were aseptic loosening in five, severe lysis in four, extensive wear and metallosis in one, and liner dissociation in one. In one hip, with a fractured acetabular component due to severe pelvic bone defect, both the components were revised. Conclusion. Our results suggest that an early failure of the precoated femoral stem was mainly precipitated due to insufficient cementing technique (a thin cement mantle). Inherent flaws of the stem design may also accelerate the mechanism of failure


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 10 - 10
1 Jun 2018
Gonzalez Della Valle A
Full Access

In the 1960's Sir John Charnley introduced to clinical practice his low friction arthroplasty with a highly polished cemented femoral stem. The satisfactory long term results of this and other cemented stems support the use of polymethylmethacrylate (PMMA) for fixation. The constituents of PMMA remain virtually unchanged since the 1960s. However, in the last three decades, advances in the understanding of cement fixation, mixing techniques, application, pressurization, stem materials and design provided further improvements to the clinical results.

The beneficial changes in cementing technique include femoral preparation to diminish interface bleeding, pulsatile lavage, reduced cement porosity by vacuum mixing, the use of a cement restrictor, pre-heating of the stem and polymer, retrograde canal filling and pressurization with a cement gun, stem centralization and stem geometries that increase the intramedullary pressure and penetration of PMMA into the cancellous structure of bone. Some other changes in cementing technique proved to be detrimental and were abandoned, such as the use of Boneloc cement that polymerised at a low temperature, and roughening and pre-coating of the stem surface.

In the last two decades there has been a tendency towards an increased use of cementless femoral fixation for primary hip arthroplasty. The shift in the type of fixation followed the consistent, durable fixation obtained with uncemented acetabular cups, ease of implantation and the poor results of cemented femoral fixation of rough and pre-coated stems.

Unlike cementless femoral fixation, modern cemented femoral fixation has numerous advantages: it is versatile, durable and can be used regardless of the diagnosis, proximal femoral geometry, natural neck version, and bone quality. It can be used in combination with antibiotics in patients with a history or predisposition for infection. Intra-operative femoral fractures are rare. However, the risk may be increased in collarless polished tapered stems. Post-operative thigh pain is extremely rare. Survivorship has not been surpassed by uncemented femoral fixation and it continues to be my preferred form of fixation. However, heavy, young, male patients may exhibit a slightly higher aseptic loosening rate.