Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out bone removal for a laminar decompression after registration of CT scan images of one cadaveric specimen. A specialized acorn-shaped bone removal robotic drill was used to complete a robotic lumbar laminectomy. Post-procedure advanced imaging was obtained to compare actual bony decompression to the surgical plan. After confirming accuracy of the technique, a minimally invasive robotic-assisted laminectomy was performed on one 72-year-old female patient with lumbar spinal stenosis. Postoperative advanced imaging was obtained to confirm the decompression. Results. A workflow for robotic-assisted lumbar laminectomy was successfully developed in a
Aims. Loosening of pedicle screws is a major complication of posterior
spinal stabilisation, especially in the osteoporotic spine. Our
aim was to evaluate the effect of cement augmentation compared with
extended dorsal instrumentation on the stability of posterior spinal
fixation. Materials and Methods. A total of 12 osteoporotic
Objectives. Cement augmentation of pedicle screws could be used to improve screw stability, especially in osteoporotic vertebrae. However, little is known concerning the influence of different screw types and amount of cement applied. Therefore, the aim of this biomechanical in vitro study was to evaluate the effect of cement augmentation on the screw pull-out force in osteoporotic vertebrae, comparing different pedicle screws (solid and fenestrated) and cement volumes (0 mL, 1 mL or 3 mL). Materials and Methods. A total of 54 osteoporotic
To determine whether measuring pedicle size on CT is accurate and reproducible using the WEBPACS ruler tool. Radiological analysis. A
Many studies have investigated the kinematics of the lumbar spine and the morphological features of the lumbar discs. However, the segment-dependent immediate changes of the lumbar intervertebral space height during flexion-extension motion are still unclear. This study examined the changes of intervertebral space height during flexion-extension motion of lumbar specimens. First, we validated the accuracy and repeatability of a custom-made mechanical loading equipment set-up. Eight lumbar specimens underwent CT scanning in flexion, neural, and extension positions by using the equipment set-up. The changes in the disc height and distance between adjacent two pedicle screw entry points (DASEP) of the posterior approach at different lumbar levels (L3/4, L4/5 and L5/S1) were examined on three-dimensional lumbar models, which were reconstructed from the CT images.Objectives
Methods
Between March 2000 and February 2006, we carried out a prospective study of 100 patients with a low-grade isthmic spondylolisthesis (Meyerding grade II or below), who were randomised to receive a single-level and instrumented posterior lumbar interbody fusion with either one or two cages. The minimum follow-up was for two years. At this stage 91 patients were available for review. A total of 47 patients received one cage (group 1) and 44 two cages (group 2). The clinical and radiological outcomes of the two groups were compared. There were no significant differences between the two groups in terms of post-operative pain, Oswestry Disability Score, clinical results, complication rate, percentage of post-operative slip, anterior fusion rate or posterior fusion rate. On the other hand, the mean operating time was 144 minutes (100 to 240) for patients in group 1 and 167 minutes (110 to 270) for those in group 2 (p = 0.0002). The mean blood loss up to the end of the first post-operative day was 756 ml (510 to 1440) in group 1 and 817 ml (620 to 1730) in group 2 (p <
0.0001). Our results suggest that an instrumented posterior lumbar interbody fusion performed with either one or two cages in addition to a bone graft around the cage has a low rate of complications and a high fusion rate. The clinical outcomes were good in most cases, regardless of whether one or two cages had been used.
Previous studies on the anatomy of the lumbar spine have not clarified the precise relationship of the origin of the lumbar roots to their corresponding discs or their angulation to the dural sac. We studied 33 cadavers (25 formalin-preserved and eight fresh-frozen) and their radiographs to determine these details. All cadavers showed a gradual decrease in the angle of the nerve root from L1 to S1. The origin of the root was found to be below the corresponding disc for the L1 to L4 roots. In the formalin-preserved cadavers 8% of the L5 roots originated above, 64% below and 28% at the L4/L5 disc. In the fresh cadavers the values were 12.5%, 62.5% and 25%, respectively. For the S1 root 76% originated above and 24% at the L5-S1 disc in the formalin-preserved cadavers and 75% and 25%, respectively, in the fresh cadavers. A herniated disc usually compresses the root before division of the root sleeve. Thus, compression of the thecal sac before the origin of the root sleeve is common for L1 to L5 whereas compression at the root sleeve is common for S1. Our findings are of value in understanding the pathophysiology of prolapse of the disc and in preventing complications during surgery.