Hip arthroscopy rates continue to increase. As a result, there is growing interest in capsular management techniques. Without careful preservation and surgical techniques, failure of the repair result in capsular deficiency, contributing to iatrogenic instability and persistent post-operative pain. In this setting, capsular reconstruction may be indicated, however there is a paucity of objective evidence comparing surgical techniques to identify the optimal method. Therefore, the objective of this study was to evaluate the biomechanical effect of capsulectomy and two different capsular reconstruction techniques (iliotibial band [ITB] autograft and Achilles tendon allograft) on hip joint kinematics in both rotation and abduction/adduction. Eight paired fresh-frozen hemi-pelvises were dissected of all overlying soft tissue, with the exception of the
Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting PAO on range of motion and capsular mechanics in hips with acetabular retroversion. Twelve cadaveric hips (n = 12, m:f = 9:3; age = 41 ± 9 years; BMI = 23 ± 4 kg/m2) were included in this study. Each hip was CT imaged and indicated acetabular retroversion (i.e., crossover sign, posterior wall sign, ischial wall sign, retroversion index > 20%, axial plane acetabular version < 15°); and showed no other abnormalities on CT data. Each hip was denuded to the bone-and-capsule and mounted onto a 6-DOF robot tester (TX90, Stäubli), equipped with a universal force-torque sensor (Omega85, ATI). The robot positioned each hip in five sagittal angles: Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°; and performed hip internal-external rotations and abduction-adduction motions to 5 Nm in each position. After the intact stage was tested, each hip underwent an anteverting PAO, anteverting the acetabulum and securing the fragment with long bone screws. The capsular ligaments were preserved during the surgery and each hip was retested postoperatively in the robot. Postoperative CT imaging confirmed that the acetabular fragment was properly positioned with adequate version and head coverage. Paired sample t-tests compared the differences in range of motion before and after PAO (CI = 95%; SPSS v.24, IBM). Preoperatively, the intact hips with acetabular retroversion demonstrated constrained internal-external rotations and abduction-adduction motions. The PAO reoriented the acetabular fragment and medialized the hip joint centre, which tightened the iliofemoral ligament and slackenend the pubofemoral ligament. Postoperatively, internal rotation increased in the deep hip flexion positions of Flexion 60° (∆IR = +7°, p = 0.001) and Flexion 90° (∆IR = +8°, p = 0.001); while also demonstrating marginal decreases in external rotation in all positions. In addition, adduction increased in the deep flexion positions of Flexion 60° (∆ADD = +11°, p = 0.002) and Flexion 90° (∆ADD = +12°, p = 0.001); but also showed marginal increases in abduction in all positions. The anteverting PAO restored anterosuperior acetabular clearance and increased internal rotation (28–33%) and adduction motions (29–31%) in deep hip flexion. Restricted movements and positive impingement tests typically experienced in these positions with acetabular retroversion are associated with clinical symptoms of FAI (i.e., FADIR). However, PAO altered capsular tensions by further tightening the anterolateral
The occurrence of impingement can lead to instability, accelerated wear, and unexplained pain after THA. While implant and bony impingement were widely investigated, importance of soft tissue impingement was unclear. In the THA through posterior approach, it is known that posterior soft tissue repair can decrease the risk of dislocation. However, it is not known whether anterior soft tissue impingement by anterior
Introduction. Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile liner. However, distal regions of the liner can impinge on soft-tissues like
INTRODUCTION. Interest in tissue-preserving or minimally invasive total hip arthroplasty (THA) is increasing with focus toward decreased hospital stay, enhanced rehabilitation, and quicker recovery for patients. Two tissue-preserving techniques, the anterior and superior approaches to THA, have excellent clinical results, but little is known about their relative impact on soft tissue. The purpose of this study was to evaluate the type and extent of tissue damage after THA with each approach, focusing on abductors, short external rotators, and the
Introduction. Current methodologies for designing and validating existing THA systems can be expensive and time-consuming. A validated mathematical model provides an alternative solution with immediate predictions of contact mechanics and an understanding of potential adverse effects. The objective of this study is to demonstrate the value of a validated forward solution mathematical model of the hip that can offer kinematic results similar to fluoroscopy and forces similar to telemetric implants. Methods. This model is a forward solution dynamic model of the hip that incorporates the muscles at the hip, the
Purpose. While changes in lower limb alignment and pelvic inclination after total hip arthroplasty (THA) using certain surgical approaches have been studied, the effect of preserving the joint capsule is still unclear. We retrospectively investigated changes in lower limb alignment, length and pelvic inclination before and after surgery, and the risk of postoperative dislocation in patients who underwent capsule preserving THA using the anterolateral-supine (ALS) approach. Methods. Between July 2016 and March 2018, 112 hips (non-capsule preservation group: 42
Hip impingement causes clinical problems for both the native hip, where labral or chondral damage can cause severe pain, and in the replaced hip, where subluxation can cause squeaking/metallosis through edge loading, or can cause dislocation. There is much research into bony/prosthetic hard impingements showing that anatomical variation/component mal-positioning can increase the risk of impingement. However, there is a lack of basic science describing the role of the
Introduction. The large diameter mobile polyethylene liner of the dual mobility implant provides increased resistance to hip dislocation. However, a problem specific to the dual mobility system is intra-prosthetic dislocation (IPD), secondary to loss of the retentive rim, causing the inner head to dissociate from the polyethylene liner. We hypothesized that impingement of the polyethylene liner with the surrounding soft-tissue inhibits liner motion, thereby facilitating load transfer from the femoral neck to the liner and leading to loss of retentive rim over time. This mechanism of soft-tissue impingement with the liner was evaluated via cadaver experiments, and retrievals were used to assess polyethylene rim damage. Methods. Total hip arthroplasty was performed on 10 cadaver hips using 3D printed dual mobility components. A metal wire was sutured to the posterior surface (underside) of the iliopsoas, and metal wires were embedded into grooves on the outer surface of the liner and inner head to identify these structures under fluoroscopy. Tension was applied to the iliopsoas to move the femur from maximum hyperextension to 90° of flexion for the purpose of visualizing the iliopsoas and capsule interaction with the mobile liner. The interaction of the mobile liner with the iliopsoas was studied using fluoroscopy and direct visual observation. Fifteen retrieved dual mobility liners were assessed for rim edge and rim chamfer damage. Rim edge damage was defined as any evidence of contact, and rim chamfer damage was classified into six categories: impact ribs on the chamfer surface, loss of machining marks, scratching or pitting, rim deformation causing a raised lip, a rounded rim edge, or embedded metal debris. Results. Manipulation of the cadaver specimens through full range of motion showed liner impingement with the iliopsoas tendon in low flexion angles, which impeded liner motion. At high flexion angles (beyond 30°), the iliopsoas tendon moved away from the liner and impingement was not observed. The fluoroscopy tests using the embedded metal wires confirmed what was observed during manual manipulation of the specimen. When observing the hip during maximum hyperextension, 0°, 15°, and 30° of flexion, there was obvious tenting of the iliopsoas. All retrieved components showed damage on the rim and the chamfer surface. The most common damage seen was scratching/ pitting. There was no association between presence of damage and time in vivo controlling for age and Body Mass Index (p≥0.255). Discussion. The cadaver studies showed that the mobile liner motion could be impeded by impingement with the iliopsoas tendon and
Background. In vivo fluoroscopic studies have proven that femoral head sliding and separation from within the acetabular cup during gait frequently occur for subjects implanted with a total hip arthroplasty. It is hypothesized that these atypical kinematic patterns are due to component malalignments that yield uncharacteristically higher forces on the hip joint that are not present in the native hip. This in vivo joint instability can lead to edge loading, increased stresses, and premature wear on the acetabular component. Objective. The objective of this study was to use forward solution mathematical modeling to theoretically analyze the causes and effects of hip joint instability and edge loading during both swing and stance phase of gait. Methods. The model used for this study simulates the quadriceps muscles, hamstring muscles, gluteus muscles, iliopsoas group, tensor fasciae latae, and an adductor muscle group. Other soft tissues include the patellar ligament and the ischiofemoral, iliofemoral, and pubofemoral hip capsular ligaments. The model was previously validated using telemetric implants and fluoroscopic results from existing implant designs. The model was used to simulate theoretical surgeries where various surgical alignments were implemented and to determine the hip joint stability. Parameters of interest in this study are joint instability and femoral head sliding within the acetabular cup, along with contact area, contact forces, contact stresses, and ligament tension. Results. During swing phase, it was determined that femoral head pistoning is caused by
While hip arthroscopy utilization continues to increase, capsular management remains a controversial topic. Therefore the purpose of this research was to investigate the biomechanical effect of capsulotomy and capsular repair techniques on hip joint kinematics in varying combinations of sagittal and coronal joint positions. Eight fresh-frozen hemipelvises (4 left, 6 male) were dissected of all overlying soft tissue, with the exception of the
Recently, a special type of surface pitting found on metal implants was proposed to arise from “inflammatory cell-induced” corrosion (ICI, Figure 1) (1, 2). The actual mechanism of this was unknown, but similar features were suggested to be artefacts of electrocautery damage from revision surgery (3). Under lab conditions and without the influence of any cells, we aimed to reproduce the same surface pits and structures with electrocautery. Methods. A polished cobalt-chromium disk (40 mm diameter, 8 mm thick) was marked into 8 sections for various testing conditions (Figure 2a). A stainless steel Bovie tip with a unipolar electrocautery machine (SYSTEM 5000, ConMed, USA) was used at typical surgical coagulation conditions: (70 volt, 120 watts, 562 KHz frequency). We mimicked three types of surgical techniques with the electrocautery: “Dotting” was repeated, on and off, direct surface contact; “Dragging” was constant, direct surface contact; “Hovering” was pausing several millimeters above the surface. We also examined the interplay of these practices on diamond-tip-induced scratches and either dry or wet (normal saline) conditions. High magnification images (Keyence VHX-2000E) were taken after the disk was cleaned with laboratory soap, light mechanical scrubbing, and formalin soak. Results. Coagulation mode generated electrical sparks when dotting/dragging and electrical arcs when hovering. These left seared marks that persisted even after cleaning (Figure 2b). At higher magnification, the surface features were comparable in size and shape to those attributed to ICI (1, 2). Areas wet with saline (Figure 3a) showed an abundance of ringed pits with raised edges that closely resembled those observed in Figure 1. Furthermore we obtained images similar to the phenomenon of “cellular tracks” (Figure 3b) (1). Premade scratches did not influence the pit arrangement but scratches made by the Bovie tip produced the characteristic scratch-associated ICI features as observed on implant retrievals in the past (Figure 3c) (4). Discussion. In the absence of cells, pitting equivalent to proposed ICI features was successfully replicated using an electrocautery in coagulation mode. Previously (4), we found a high incidence but small surface area of these features on the majority of retrievals, predominantly located in a focal area of the superior aspect of the femoral ball next to the junction of the stem. There were fewer on the inferior aspect which is consistent with electocautery damage when dissecting the
Introduction. Rottinger published a description of an anterior muscle sparing approach to the hip. It utilizes the same muscle interval as the classic WatsonJones approach between the gluteus medius laterally and tensor fascia lata medially. However, this technique has the disadvantage of needing asplit table and a sterile bag to mobilize the operative leg as extension, adduction and external rotation are the key points for femoral preparation. This study describes our experience for an equivalent of the Watson Jones approach with a simplified technique for the femoral preparation. Material and Methods. Incision starts 1cm distal and 3cm posterior to the ASIS and continues distally for about 8–10 cm along the straightline joining the lateral edge of the patella. It can be extended proximally or distally if necessary. The surgeon is placed posteriorly and the assistant anteriorly. The hip is dislocated with extension and external rotation to osteotomize the femoral neck. During the preparation of the acetabulum the femur is pushed posteriorly with internal rotation. Steinman pins are placed around the acetabulum to improve visualization for reaming and implanting theacetabular components. The femur is then exposed in a simplified way. The operated limb remains on the table. It is adducted above the contralateral limb and rotated outward to allow the femoral metaphysis to protrude. The foot is placed on the edge of the table beside the assistant, the knee is maintained with 45° flexion. The
We perform the direct approach using a standard radiolucent operative table with extender at the foot, and the assistance of fluoroscopy. The patient is positioned supine with the pubic symphysis aligned at the table break. The anterior superior iliac spine (ASIS) and center of the knee are marked, and a line drawn between. The incision commences proximally from two finger breadths distal and two finger breadths lateral to the ASIS, and extends distally 8–10 cm. Using fluoroscopy, the anterior aspect femoral neck is located. The incision is placed over the lateral aspect of the greater trochanter, which avoids the lateral femoral cutaneous nerve. The tensor fascia lata is identified, which has a distinctive purple hue, and dissected free from the intermuscular septum lateral to the sartorius and the rectus muscles. The deep, investing aponeurosis of the tensor fascia lata is split using a tonsil. Just below lie the lateral circumflex vessels, two veins and one artery, which must be either ligated or cauterised. A retractor is placed superior to the femoral neck over top of the superior
Introduction. Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile insert. However, distal regions of the insert may impinge on soft tissues like the iliopsoas, leading to groin pain. Additionally, soft-tissue impingement may trap the mobile insert, leading to excessive loading of the insert rim from engagement with the femoral neck and subsequent intra-prosthetic dislocation. To address this, an Anatomically Contoured Dual Mobility (ACDM) insert with a soft-tissue friendly distal geometry was developed (Fig.1). Previously, the ACDM insert was shown to maintain the femoroacetabular contact area and joint stability of a conventional DM insert [Duffy et al. BJJ 2013, 95-B:34, p298; Zumbrunn et al. BJJ 2013, 95-B:34, p605]. The goal of this study was to utilize cadaver specimens to verify whether the ACDM insert could reduce soft-tissue impingement relative to a conventional DM insert. Methods. Fluoroscopic imaging was used to evaluate soft-tissue interaction with ACDM and conventional DM inserts in four cadaver hips (Fig. 2). A metal wire was sutured to the deep fibers of the iliopsoas muscle/tendon, and metal wires were embedded in the inner head and the mobile insert for fluoroscopic visualization. All soft tissue except the anterior
The Superior Hip Approach allows for safe reconstruction of the hip while maximizing preservation of the surrounding soft tissues. The procedure involves an incision in the
Purpose. Rectus femoris avulsion (RFA) injuries in paediatric patients are currently managed conservatively. However, the proximal attachment of the rectus femoris muscle lies in a critical zone in the hip joint with attachments to the anterior
Economic data, clinical outcome studies, and anatomical studies continue to support the Superior Hip Approach as a preferred approach for improved safety, maximal tissue preservation, rapid recovery, and minimised cost. Clinical studies show exceedingly low rates of all major complications including femur fracture, dislocation, and nerve injury. Economic data from Q1 2013 to Q2 2016 demonstrate that CMS-insured patients treated by the Superior Hip Approach have the lowest cost of all patients treated in Massachusetts by an average of more than $7,000 over 90 days. The data show that the patients treated by the Superior Hip Approach have lower cost than any other surgical technique. Matched-pair bioskills dissections demonstrate far better preservation of the
Goals for total hip arthroplasty include acceleration of recovery, optimisation of component placement, minimisation of peri-operative complications, and maximal preservation of surrounding soft tissues. Achieving these goals when combined with appropriate implant design and manufacture can lead to decades of excellent hip function. With the exception of relatively rapid recovery, which can also be achieved with virtually all modern surgical exposures, the anterior hip approach fails to reliably achieve these goals. Problems with the anterior exposure for total hip arthroplasty are becoming increasingly recognised. Complications with equal or higher incidences than alternative exposures include: 1.) Early wound complications, 2.) Infection, 3.) Intra-operative and post-operative femur fracture, 4.) Greater trochanteric fracture, 5.) Dislocation, 6.) Femoral component loosening, 7.) Poor component placement, 8.) Poor soft tissue balance, 9.) Incisions with poor aesthetics and associated superficial hypaesthesia and dysaesthesia. These complications may be in part due to: 1.) The anterior and posterior soft tissue releases often necessary to complete the exposure, 2.) Poor ability to anatomically repair the
Introduction. Bony deformities in the hip that cause femoroacetabular impingement (FAI) can be resected in order to delay the onset of osteoarthritis and improve hip range of motion. However, achieving accurate osteoplasty arthroscopically is challenging because the narrow