Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

CAN MATHEMATICAL MODELLING BE A THEORETICAL REPLACEMENT FOR FLUOROSCOPIC TOTAL HIP ARTHROPLASTY ANALYSES?

International Society for Technology in Arthroplasty (ISTA) meeting, New Early-Career Webinar Series (NEWS), held online, November 2020.



Abstract

Introduction

Current methodologies for designing and validating existing THA systems can be expensive and time-consuming. A validated mathematical model provides an alternative solution with immediate predictions of contact mechanics and an understanding of potential adverse effects. The objective of this study is to demonstrate the value of a validated forward solution mathematical model of the hip that can offer kinematic results similar to fluoroscopy and forces similar to telemetric implants.

Methods

This model is a forward solution dynamic model of the hip that incorporates the muscles at the hip, the hip capsule, and the ability to modify implant position, orientation, and surgical technique. Muscle forces are simulated to drive the motion, and a unique contact detection algorithm allows for virtual implantation of components in any orientation. Patient-specific data was input into the model for a telemetric subject and for a fluoroscopic subject.

Results

For both stance and swing phase, the model predicted similar patterns and magnitudes compared to telemetry (forces) and fluoroscopy (kinematics). During stance phase, the model predicts 2.5 xBW of maximum hip force while telemetry predicts 2.3 xBW, yielding 8.7% error (Figure 1a). During swing phase, the model predicts 1.1 xBW maximum hip force, similar to telemetry (Figure 1b). During stance phase, the model predicts 1.3mm of hip separation (sliding) compared to 1.6mm for fluoroscopy, yielding 18.8% error (Figure 1c). During swing phase, the model predicts 1.9mm of separation compared to 1.7mm for fluoroscopy, yielding 11.8% error (Figure 1d). The model was also used to assess component placement, version, and optimal positioning compared to live surgery, producing very promising results.

Conclusion

The model has proven accurate in predicting kinematics and forces. Therefore, forward solution mathematical modeling can be used to efficiently evaluate new component designs, positioning and technique differences, patient-specific scenarios, and any specific contribution towards THA outcomes that cannot be controlled in vivo.

For any figures or tables, please contact the authors directly.