To analyze the short-term outcome after medial open-wedge high tibial osteotomy with a 3D-printing technology in early medial keen osteoarthritis and varus malalignment. 32 knees(28 cases) of mOWHTO (fixation with an angular-stable TomoFix implant(Synthes)) with a 3D-printing technology combined with arhtroscopy were prospectively surveyed with regard to functional outcome(Hospital for special knee score [HSS] score). Pre- and postoperative tibial bone varus angle (TBVA), mechanical medial proximal tibial angle (MPTA), and alignment were analyzed with regard to the result.Objective
Design and Method
Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after
High tibial osteotomy (HTO) is an effective surgical treatment for isolated medial compartment knee osteoarthritis; however, widespread adoption is limited due to difficulty in achieving the planned correction, and patient dissatisfaction due to soft tissue irritation. A new
High tibial osteotomy (HTO) is a joint preserving alternative to knee replacement for medial tibiofemoral osteoarthritis in younger, more active patients. The procedure is technically challenging and limited also by ‘one size fits all’ plates which can result in patient discomfort necessitating plate removal. This clinical trial evaluated A novel custom-made
Unicompartmental knee arthroplasty (UKA) and high tibial osteotomy (HTO) are well-established operative interventions in the treatment of knee osteoarthritis (KOA). However, which of these interventions is more beneficial, to patients with KOA, is not known and remains a topic of much debate. Aims: (i) To determine whether UKA or
Introduction and Objective. After anterior cruciate ligament reconstruction one of the risk factors for graft (re-)rupture is an increased posterior tibial slope (PTS). The current treatment for PTS is a high tibial osteotomy (HTO). This is a free-hand method, with 1 degree of tibial slope correction considered to be equal to 1 or even 1.67 mm of the anterior wedge resection. Error rates in the frontal plane reported in literature vary from 1 – 8.6 degrees, and in the sagittal plane outcomes in a range of 2 – 8 degrees are reported when planned on PTSs of 3 – 5 degrees. Therefore, the free-hand method is considered to have limited accuracy. It is expected that
Abstract. OBJECTIVES. Valgus high tibial osteotomy (HTO) represents an effective treatment for patients with medial compartment osteoarthritis (OA) in a varus knee. However, the mechanisms which cause this clinical improvement are unclear. Previous studies suggest a wider stance gait can reduce medial compartment loading via reduction in the external knee adduction moment (KAM); a measure implicated in progression of medial compartment OA. This study aimed to measure whether valgus
Introduction and Objective. Medial Knee Osteoarthritis (MKO) is associated with abnormal knee varism, this resulting in altered locomotion and abnormal loading at tibio-femoral condylar contacts. To prevent end-stage MKO, medial compartment decompression is selectively considered and, when required, executed via High Tibial Osteotomy (HTO). This is expected to restore normal knee alignment, load distribution and locomotion. In biomechanics,
Abstract. Objective. Explore whether high tibial osteotomy (HTO) changes knee contact forces and to explore the relationship between the external knee adduction moment (EKAM) pre and 12 months post
Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for
The medial opening-wedge high tibial osteotomy (OW-HTO) is an accepted option to treat the isolated medial compartment osteoarthritis (OA) in varus knee. Despite satisfactory outcomes were described in literature, consistent complication rate has been reported and the provided accuracy of coronal alignment correction using conventional
The aim of this study was to determine whether the clinical outcome of autologous chondrocyte transplantation was dependent on the timing of a high tibial osteotomy in tibio-femoral mal-aligned knees. Between 2000 and 2005, forty-eight patients underwent autologous chondrocyte implantation with
Introduction. Simultaneous correction of knee varus malalignment with medial open wedge high tibial osteotomy (MOWHTO) combined with anterior cruciate ligament (ACL) surgery aims to address symptomatic unicompartmental osteoarthritis in addition to restore knee stability in order to improve outcomes. The aim of this study is to present at least 5 years results of 32 patients who underwent simultaneous knee realignment osteotomy with ACL surgery. Methods. Patients with symptomatic instability due to chronic ACL deficiency or failed previous ACL surgery together with a varus malalignment of ≥6°, previous medial meniscectomy and symptomatic medial compartment pain who were treated with MOWHTO combined with ACL surgery were enrolled. ACL surgery was performed with the anatomical single bundle all-inside technique using TightRope. ®. RT (Arthrex, Naples, FL, USA) and MOWHTO using TomoFix. ®. medial high tibia plate (DePuy Synthes, Raynham, MA, USA) in all cases. Patients were evaluated preoperatively and at 6 months, 12 months and annually postoperatively using the Knee Injury and Osteoarthritis Outcome Score (KOOS), Oxford Knee Score (OKS) and Euroqol's Visual Analogue Score (VAS) for pain. Results. 32 patients (22 men and 10 women) with a mean age of 41.2 years and mean BMI of 28.6 kg/m. 2. , underwent the combined procedures. Tibiofemoral neutral re-alignment was achieved in all patients with
Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model. 6. of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed. RESULTS. PC1 (32.94% of variation) and PC2 (25.79% of variation) from PCA analysis and correlation matrices separated patients according to correlated clusters of established inflammatory markers of OA pain and progression (IL6/IL8, r=0.754, p<0.001) and anti-inflammatory mediators (IL4/IL10, r=0.469, p=0.005). Bone turnover marker ALP was positively associated with KL grade (r=0.815, p=0.002) and negatively associated with IL10 (r=−0.402, p=0.018) and first peak knee loading pressures (r=−0.688, p=0.019). RANKL was positively associated with IL4 (r=0.489, p=0.003). Synovial fluid Sema3A concentrations showed separate clustering from all OA progression markers and was inversely correlated with TNF-α (r=−0.423, p=0.022) in
BACKGROUND. High tibial Osteotomy (HTO) realigns the forces in the knee to slow the progression of osteoarthritis. This study relates the changes in knee joint biomechanics during level gait to glutamate signalling in the subchondral bone of patients pre and post
Background. Since 2011, the knee service at the Nuffield Orthopaedic Centre has been offering a neutralising medial opening wedge high tibial osteotomy (HTO) to a group of patients presenting with early medial osteoarthritis of the knee, varus alignment and symptoms for more than 2 years. During development of this practice an association was observed between this phenotype of osteoarthritis and the presence of CAM deformity at the hip. Methods. A retrospective cohort study. All patients who underwent
Glutamate is a neurotransmitter that transmits mechanical signals in bone (1) and activates glutamate receptors and transporters, in bone, cartilage, meniscus and synovium (2). Glutamate receptor activation influences inflammatory, degenerative and nociceptive pathways in arthritic joints (2). Thus glutamate signalling is a mechanism whereby mechanical load can directly influence joint pathology and pain. We have investigated components of glutamate signalling in the subchondral bone of patients with osteoarthritis to determine which are expressed and whether this varies in anatomical regions subject to different loads. Subchondral bone was sampled from tibial cuts derived from total knee arthroplasty (n=2, TKR, Kellgren Lawrence grade 3) and from tibial drill hole sites from high tibial osteotomy (n=5,