Advertisement for orthosearch.org.uk
Results 1 - 20 of 61
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 40 - 40
23 Feb 2023
Critchley O Guest C Warby S Hoy G Page R
Full Access

Glenoid bone grafting in reverse total shoulder arthroplasty (RTSA) has emerged as an effective method of restoring bone stock in the presence of complex glenoid bone loss, yet there is limited published evidence on efficacy. The aim of this study was to conduct an analysis of clinical and radiographic outcomes associated with glenoid bone grafting in primary RTSA.

Patients who underwent a primary RTSA with glenoid bone grafting were retrospectively identified from the databases of two senior shoulder surgeons. Inclusion criteria included minimum of 12 months clinical and/or radiographical follow up. Patients underwent preoperative clinical and radiographic assessment. Graft characteristics (source, type, preparation), range of movement (ROM), patient-reported outcome measures (Oxford Shoulder Scores [OSS]), and complications were recorded. Radiographic imaging was used to analyse implant stability, graft incorporation, and notching by two independent reviewers.

Between 2013 and 2021, a total of 53 primary RTSA procedures (48 patients) with glenoid bone grafting were identified. Humeral head autograft was used in 51 (96%) of cases. Femoral head allograft was utilised in two cases. Depending on the morphology of glenoid bone loss, a combination of structural (corticocancellous) and non-structural (cancellous) grafts were used to restore glenoid bone stock and the joint line. All grafts were incorporated at review. The mean post-operative OSS was significantly higher than the pre-operative OSS (40 vs. 22, p < 0.001). ROM was significantly improved post-operatively. One patient is being investigated for residual activity-related shoulder pain. This patient also experienced scapular notching resulting in the fracturing of the inferior screw. One patient experienced recurrent dislocations but was not revised.

Overall, at short term follow up, glenoid bone grafting was effective in addressing glenoid bone loss with excellent functional and clinical outcomes when used for complex bone loss in primary RTSA. The graft incorporation rate was high, with an associated low complication rate.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_10 | Pages 43 - 43
1 Jun 2023
Mackey R Robinson M Mullan C Breen N Lewis H McMullan M Ogonda L
Full Access

Introduction

The purpose of this study is to evaluate the radiological and clinical outcomes in Northern Ireland of free vascularised fibular bone grafting for the treatment of humeral bone loss secondary to osteomyelitis. Upper limb skeletal bone loss due to osteomyelitis is a devastating and challenging complication to manage for both surgeon and patient. Patients can be left with life altering disability and functional impairment. This limb threatening complication raises the question of salvage versus amputation and the associated risk and benefits of each. Free vascularised fibula grafting is a recognised treatment option for large skeletal defects in long bones but is not without significant risk. The benefit of vascularised over non-vascularised fibula grafts include preservation of blood supply lending itself to improved remodeling and osteointegration.

Materials & Methods

Sixteen patients in Northern Ireland had free vascularised fibula grafting. Inclusion criteria included grafting to humeral defects secondary to osteomyelitis. Six patients were included in this study. Patients were contacted to complete DASH (Disabilities of the Arm, Shoulder and Hand) questionnaires as our primary outcome measure. Secondary outcome measures included radiological evaluation of osteointegration and associated operative complications. Complications were assessed via review of Electronic Care Record outpatient and in-patient documents.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_7 | Pages 1 - 1
1 Jul 2020
Paul R Maldonado-Rodriguez N Docter S Leroux T Khan M Veillette C Romeo A
Full Access

Reverse total shoulder arthroplasty (RSA) with glenoid bone grafting has become a common option for the management of significant glenoid bone loss and deformity associated with glenohumeral osteoarthritis. Despite the increasing utilization of this technique, our understanding of the rates of bone graft union, complications and outcomes are limited. The objectives of this systematic review are to determine 1) the overall rate of bone graft union, 2) the rate of union stratified by graft type and technique, 3) the reoperation and complication rates, and 4) functional outcomes, including range of motion (ROM) and functional outcome scores following RSA with glenoid bone grafting.

A comprehensive search of MEDLINE, Embase, and CINAHL databases was completed for studies reporting outcomes following RSA with glenoid bone grafting. Inclusion criteria included clinical studies with greater than 10 patients, and minimum follow up of one year. Studies were screened independently by two reviewers and quality assessment was performed using the MINORs criteria. Pooled and frequency-weighted means and standard deviations were calculated where applicable.

Overall, 15 studies were included, including nine retrospective case series (level IV), four retrospective cohort studies (level III), one prospective cohort study (level II) and one randomized control trial (level I). The entire cohort consisted of 555 patients with a mean age of 71.9±2.1 years and 70 percent female. The mean follow-up was 33.8±9.4 months. Across all procedures, 84.9% (N=471) were primary arthroplasties, and 15.1% (N=84) were revisions. The overall graft union rate was 89.2%, but was higher at 96.1% among studies that used autograft bone (9 studies, N=308). When stratified by technique, bone graft for the purposes of lateralization resulted in a 100% union rate (4 studies, N=139), while eccentric bone grafts used in asymmetric bone loss resulted in a lower union rate of 84.9% (10 studies, N=345). The overall revision rate was 6.5%, and was lowest following primary cases at 1.8% (11 studies, N=393). The pooled mean scapular notching rate was 20.1% (12 studies, N=497). Excluding notching, the pooled mean complication rate was 21.5% for all cases and 13% for primary cases (11 studies, N=393). When reported, there was significant improvement in post-operative ROM in all planes. There was also improvement in functional outcome scores, whereby the frequency-weighted mean Constant score increased from 25.9 to 67.2 (8 studies, N=319), ASES score increased from 34.7 to 75.2 (4 studies, N=142), and SST score increased from 2.1 to 7.6 (5 studies, N=196) at final follow up.

This review demonstrates that glenoid bone grafting with RSA results in good mid-term clinical and radiographic outcomes. Union rate appears to depend highly on graft type and technique, whereby the highest union rates were seen following the use of autograft bone for the purposes of lateralization. Interestingly, the union rate of autograft bone for the purposes of augmentation in eccentric bone loss is considerably lower and its impact on the long-term survivorship of the implant remains unknown.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 58 - 58
1 Feb 2020
Garcia-Rey E Garcia-Cimbrelo E
Full Access

Introduction

Biological repair of acetabular bone defects after impaction bone grafting (IBG) in total hip arthroplasty could facilitate future re-revisions in case of failure of the reconstruction again using the same technique. Few studies have analysed the outcome of these acetabular re-revisions.

Patients and Methods

We analysed 34 consecutive acetabular re-revisions that repeated IBG and a cemented cup in a cohort of 330 acetabular IBG revisions. Fresh-frozen femoral head allografts were morselized manually. All data were prospectively collected. Kaplan-Meier survivorship analysis was performed. The mean follow-up after re-revision was 7.2 years (2–17). Intraoperative bone defect had lessened after the first failed revision. At the first revision there were 14 hips with Paprosky 3A and 20 with Paprosky type 3B. At the re-revision there were 5 hips with Paproky 2B, 21 with Paprosky type 3A and 8 with type 3B. Lateral mesh was used in 19 hips.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 61 - 61
1 Jun 2018
Gehrke T
Full Access

Femoral revision after cemented total hip arthroplasty (THA) might include technical difficulties, following essential cement removal, which might lead to further loss of bone and consequently inadequate fixation of the subsequent revision stem. Bone loss may occur because of implant loosening or polyethylene wear, and should be addressed at time of revision surgery. Stem revision can be performed with modular cementless reconstruction stems involving the diaphysis for fixation, or alternatively with restoration of the bone stock of the proximal femur with the use of allografts.

Impaction bone grafting (IBG) has been widely used in revision surgery for the acetabulum, and subsequently for the femur in Paprosky defects Type 1 or 2. In combination with a regular length cemented stem, impaction grafting allows for restoration of femoral bone stock through incorporation and remodeling of the proximal femur. Cavitary bone defects affecting the metaphysis and partly the diaphysis leading to a wide femoral canal are ideal indications for this technique. In case of combined segmental-cavitary defects a metal mesh is used to contain the defect which is then filled and impacted with bone grafts. Cancellous allograft bone chips of 2 to 4 mm size are used, and tapered into the canal with rods of increasing diameters. To impact the bone chips into the femoral canal a dummy of the dimensions of the definitive cemented stem is inserted and tapped into the femur to ensure that the chips are firmly impacted. Finally, a standard stem is implanted into the newly created medullary canal using bone cement. To date several studies from Europe have shown favorable results with this technique, with some excellent long-term results reported.

Advantages of IBG include the restoration of the bone stock in the proximal femur, the use of standard length cemented stems and preserving the diaphysis for re-revision. As disadvantages of the technique: longer surgical time, increased blood loss and the necessity of a bone bank can be mentioned.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 67 - 67
1 Jun 2018
Gonzalez Della Valle A
Full Access

Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement.

Between 2005 and 2014, 21 patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all-polyethylene cup was used. Pre-operative diagnosis was aseptic loosening (15 cemented and 6 uncemented). The femoral component was revised in 10 patients. Post-operative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically.

One patient had an incomplete post-operative sciatic palsy. After a mean follow up of 47 months (13 to 128) none of the patients required re-revision of the acetabular component. One asymptomatic patient presented with aseptic loosening 9 years post-operatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations.

The early and mid-term results of revisions of large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant makes this technique an attractive option for large defects. Longer follow-up is needed to assess survivability.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 94 - 94
1 Aug 2017
Sierra R
Full Access

The technique involves impaction of cancellous bone into a cavitary femur. If segmental defects are present, the defects can be closed with stainless steel mesh. The technique requires retrograde fill of the femoral cavity with cancellous chips of appropriate size to create a new endomedullary canal. By using a set of trial impactors that are slightly larger than the real implants the cancellous bone is impacted into the tube. Subsequent proximal impaction of bone is performed with square tip or half moon impactors. A key part of the technique is to impact the bone tightly into the tube especially around the calcar to provide optimal stability. Finally a polished tapered stem is cemented using almost liquid cement in order to achieve interdigitation of the implant to the cancellous bone.

The technique as described is rarely performed today in many centers around the world. In the US, the technique lost its interest because of the lengthy operative times, unacceptable rate of peri-operative and post-operative fractures and most importantly, owing to the success of tapered fluted modular stems. In centers such as Exeter where the technique was popularised, it is rarely performed today as well, as the primary cemented stems used there, rarely require revision.

There is ample experience from around the globe, however, with the technique. Much has been learned about the best size and choice of cancellous graft, force of impaction, surface finish of the cemented stem, importance of stem length, and the limitations and complications of the technique. There are also good histology data that demonstrate successful vascularization and incorporation of the impacted cancellous bone chips and host bone.

Our experience at the clinic was excellent with the technique as reported in CORR in 2003 by M Cabanela. The results at mid-term demonstrated minimal subsidence and good graft incorporation. Six of 54 hips, however, had a post-operative distal femoral fracture requiring ORIF. The use of longer cemented stems may decrease the risk of distal fracture and was subsequently reported by the author after reviewing a case series from Exeter.

Today, I perform this technique once or twice per year. It is an option in the younger patient, where bone restoration is desired. Usually in a Paprosky Type IV femur, where a closed tube can be recreated and the proximal bone is reasonable. If the proximal bone is of poor quality, then I prefer to perform a transfemoral osteotomy, and perform an allograft prosthetic composite instead of impaction grafting, and wrap the proximal bone around the structural allograft. I prefer this technique as I can maintain the soft tissues over the bone and avoid the stripping that would be required to reinforce the bone with struts or mesh. Another indication for its use in the primary setting is in the patient with fibrous dysplasia.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 50 - 50
1 Apr 2017
Parvizi J
Full Access

Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodelling of the allograft bone by the host skeleton. Historically it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland. Indications might include all femoral revisions with bone stock loss, while the Endo-Clinic experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient.

Generally, the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Incorporation of these grafts has been described in 89%. Technical steps include: removal of failed stem and all cement, reconstruction of segmental bone defects with metal mesh (if necessary), preparation of fresh frozen femoral head allografts with bone mill, optimal bone chip diameter 2–5 mm, larger chips for the calcar area (6–8 mm), insertion of an intramedullary plug including central wire, 2 cm distal the stem tip, introduction of bone chips from proximal to distal, impaction started by distal impactors over central wire, then progressive larger impactors proximal, insertion of a stem “dummy” as proximal impactor and space filler, removal of central wire, retrograde insertion of low viscosity cement (0.5 Gentamycin) with small nozzle syringe, including pressurization, and insertion of standard cemented stem. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Post-operative care includes usually touch down weightbearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches.

Relevant complications include mainly femoral fractures due to the hardly impacted allograft bone. Subsidence of tapered polished implants might be related to cold flow within the cement mantle, however, could also be related to micro cement mantle fractures, leading to early failure. Subsidence should be less than 5 mm. Survivorship with a defined endpoint as any femoral revision after 10-year follow up has been reported by the Exeter group being over 90%, while survivorship for revision as aseptic loosening being above 98%. Within the last years various other authors and institutions reported about similar excellent survivorships, above 90%. In addition, a long-term follow up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years.

Impaction grafting might technically be more challenging and more time consuming than cement-free distal fixation techniques. It, however, enables a reliable restoration of bone stock which might especially become important in further revision scenarios in younger patients.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 50 - 50
1 Dec 2016
Gehrke T
Full Access

Femoral revision in cemented THA might include some technical difficulties, based on loss of bone stock and cement removal, which might lead to further loss of bone stock, inadequate fixation, cortical perforation or consequent fractures. Femoral impaction grafting, in combination with a primary cemented stem, allows for femoral bone restoration due to incorporation and remodeling of the allograft bone by the host skeleton. Historically, it has been first performed and described in Exeter in 1987, utilizing a cemented tapered polished stem in combination with morselised fresh frozen bone grafts. The technique was refined by the development of designated instruments, which have been implemented by the Nijmegen group from Holland.

Indications might include all femoral revisions with bone stock loss, while the ENDO-Klinik experience is mainly based on revision of cemented stems. Cavitary bone defects affecting meta- and diaphysis leading to a wide or so called “drain pipe” femora, are optimal indications for this technique, especially in young patients. Contraindications are mainly: septical revisions, extensive circumferential cortical bone loss and noncompliance of the patient.

Generally the technique creates a new endosteal surface to host the cemented stem by reconstruction of the cavitary defects with impacted morselised bone graft. This achieves primary stability and restoration of the bone stock. It has been shown, that fresh frozen allograft shows superior mechanical stability than freeze-dried allografts. Incorporation of these grafts has been described in 89%.

Technical steps include: removal of failed stem and all cement, reconstruction of segmental bone defects with metal mesh (if necessary), preparation of fresh frozen femoral head allografts with bone mill, optimal bone chip diameter 2 – 5 mm, larger chips for the calcar area (6 – 8 mm), insertion of an intramedullary plug including central wire, 2 cm distal to the stem tip, introduction of bone chips from proximal to distal, impaction started by distal impactors over central wire, then progressively larger impactors proximal, insertion of a stem “dummy” as proximal impactor and space filler, removal of central wire, retrograde insertion of low viscosity cement (0.5 Gentamycin) with small nozzle syringe, including pressurization, insertion of standard cemented stem. The cement mantle is of importance, as it acts as the distributor of force between the stem and bone graft and seals the stem. A cement mantle of at least 2 mm has shown favorable results. Originally the technique is described with a polished stem. We use standard brushed stems with comparable results. Postoperative care includes usually touch down weight bearing for 6–8 weeks, followed by 4–6 weeks of gradually increased weightbearing with a total of 12 weeks on crutches.

Survivorship with a defined endpoint as any femoral revision after 10 year follow up has been reported by the Exeter group being over 90%. While survivorship for revision related to aseptic loosening being above 98%. Within the last years various other authors and institutions reported similar excellent survivorships, above 90%. In addition a long term follow up by the Swedish arthroplasty registry in more than 1180 patients reported a cumulative survival rate of 94% after 15 years.

Impaction grafting might technically be more challenging and more time consuming than cement free distal fixation techniques. It, however, enables a reliable restoration of bone stock which might become important in further revision scenarios in younger patients.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 24 - 24
1 Apr 2019
Garcia-Rey E Garcia-Cimbrelo E
Full Access

Introduction

Impaction bone grafting (IBG) is a reliable technique for acetabular revision surgery with large segmental defects. However, bone graft resorption and cup migration are some of the limitations of this tecnique. We assess frequency and outcome of these complications in a large acetabular IBG series.

Patients and Methods

We analysed 330 consecutive hips that received acetabular IBG and a cemented cup in revision surgery with large bone defects (Paprosky types 3A and 3B). Fresh-frozen femoral head allograft was morselized manually. The mean follow-up was 17 years (3–26). All data were prospectively collected. Kaplan-Meier survivorship analysis was performed. Changes in different paremeters regarding cup position were assessed pre- and postoperatively and at the follow- up controls. Only variations greater than 5º and 3 mm were considered.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_22 | Pages 60 - 60
1 May 2013
Haddad F
Full Access

The principles of acetabular reconstruction include the creation of a stable acetabular bed, secure prosthetic fixation with freedom of orientation, bony reconstitution, and the restoration of a normal hip centre of rotation with acceptable biomechanics.

Acetabular impaction grafting, particularly with cemented implants, has been shown to be a reliable means of acetabular revision. Whilst our practice is heavily weighted towards cementless revision of the acetabulum with impaction grafting, there is a large body of evidence from Tom Slooff and his successors that cemented revision with impaction grafting undertaken with strict attention to technical detail is associated with excellent long terms results in all ages and across a number of underlying pathologies including dysplasia and rheumatoid arthritis.

We use revision to a cementless hemispherical porous-coated acetabular cup for most isolated cavitary or segmental defects and for many combined deficiencies. Morsellised allograft is packed in using chips of varied size and a combination of impaction and reverse reaming is used in order to create a hemisphere. There is increasing evidence for the use of synthetic grafts, usually mixed with allograft, in this setting. The reconstruction relies on the ability to achieve biological fixation of the component to the underlying host bone. This requires intimate host bone contact, and rigid implant stability. It is important to achieve host bone contact in a least part of the dome and posterior column – when this is possible, and particularly when there is a good rim fit, we have not found it absolutely necessary to have contact with host bone over 50% of the surface.

Once the decision to attempt a cementless reconstruction is made, hemispherical reamers are used to prepare the acetabular cavity. Sequentially larger reamers are used until there is three-point contact with the ilium, ischium and pubis. Acetabular reaming should be performed in the desired orientation of the final implant, with approximately 200 of anteversion and 400 of abduction (or lateral opening). Removing residual posterior column bone should be avoided. Reaming to bleeding bone is desirable. Morsellised allograft is inserted and packed and/or reverse reamed into any cavitary defects. This method can also be applied to medial wall uncontained defects by placing the graft onto the medial membrane or obturator internus muscle, and gently packing it down before inserting the cementless acetabular component. Either the reamer heads or trial cups can be used to trial prior to choosing and inserting the definitive implant. The fixation is augmented with screws in all cases. Incorporation of the graft may be helped by the use of autologous bone marrow.

Cementless acetabular components with impaction grafting should not be used when the host biology does not allow for stability or for bone ingrowth. This includes the severely osteopenic pelvis, pelvic osteonecrosis after irradiation, tumours, and metabolic bone disorders. They should also not be used in the presence of pelvic discontinuity unless the structure of the pelvic ring has been restored with a plate, or specialised materials/porous metals are used.

The challenge of reconstituting the acetabulum depends on the degree and type of bone loss. The principles of maximising host bone-implant contact and implant stability have borne fruit in our experience with cementless revision. The advantages of bone grafting in acetabular reconstruction include the ability to restore bone stock, to rebuild a normal hip center and hip biomechanics and to increase bone stock for future revisions.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_13 | Pages 100 - 100
1 Nov 2015
Haddad F
Full Access

Introduction

The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use impaction allografting with cement. This has captured the attention of the orthopaedic community because of its potential for reconstituting femoral bone stock.

History

The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morselised bone with cement on the femoral side was first reported by the Exeter group.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 62 - 62
1 Dec 2016
Della Valle AG
Full Access

Uncontained acetabular defects with loss of superior iliac and posterior column support (Paprosky 3B) represent a reconstructive challenge as the deficient bone will preclude the use of a conventional hemispherical cup. Such defects can be addressed with large metallic constructs like cages with and without allograft, custom tri-flange cups, and more recently with trabecular metal augments. An underutilised alternative is impaction bone grafting, after creating a contained cavitary defect with a reinforcement mesh. This reconstructive option delivers a large volume of bone while using a small-size socket fixed with acrylic cement.

Between 2006 and 2014, sixteen patients with a Paprosky 3B acetabular defect were treated with cancellous, fresh frozen impaction grafting supported by a peripheral reinforcement mesh secured to the pelvis with screws. A cemented all polyethylene cup was used. Preoperative diagnosis was aseptic loosening (10 cemented and 6 non-cemented). The femoral component was revised in 9 patients. Postoperative course consisted of 3 months of protected weight bearing. Patients were followed clinically and radiographically.

One patient had an incomplete postoperative sciatic palsy. After a mean follow up of 40 months (24 to 104) none of the patients required re-revision. One asymptomatic patient presented with aseptic loosening 9 years postoperatively. Hardware failure was not observed. All patients had radiographic signs of graft incorporation and bone remodeling. There were no dislocations.

The early and mid-term results of revisions for large acetabular defects with this technique are encouraging. Reconstitution of hip center of rotation and bone stock with the use of a small-size implant make this technique an attractive option for these large defects. Longer follow-up is needed to assess survivability.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 63 - 63
1 Dec 2016
Gross A
Full Access

Impaction grafting is an excellent option for acetabular revision. It is technique specific and very popular in England and the Netherlands and to some degree in other European centers. The long term published results are excellent. It is, however, technique dependent and the best results are for contained cavitary defects. If the defect is segmental and can be contained by a single mesh and impaction grafting, the results are still quite good. If, however, there is a larger segmental defect of greater than 50% of the acetabulum or a pelvic discontinuity, other options should be considered.

Segmental defects of 25–50% can be managed by minor column (shelf) or figure of 7 structural allografts with good long term results. Porous metal augments are now a good option with promising early to mid-term results. Segmental defects of greater than 50% require a structural graft or porous augment usually protected by a cage. If there is an associated pelvic discontinuity then a cup cage is a better solution.

An important question is does impaction grafting facilitate rerevision surgery? There is no evidence to support this but some histological studies of impacted allograft would suggest that it may. On the other hand there are papers that show that structural allografts do restore bone stock for further revision surgery. Also the results of impaction grafting are best in the hands of surgeons comfortable with using cement on the acetabular side, and one of the reasons why this technique is not as popular in North America.


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_1 | Pages 54 - 54
1 Feb 2015
Haddad F
Full Access

Introduction:

The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use of impaction allografting with cement.

History:

The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morselised bone with cement on the femoral side was first reported by the Exeter group.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_14 | Pages 10 - 10
1 Jul 2016
Saraogi A Lokikere N Siney P Nagai H Purbach B Raut V Kay P
Full Access

The choice of stem length in total hip revision with impaction bone grafting of femur is essentially based upon the grade of cavitation of femur and surgeon's preference. The standard length stem has been often critiqued for the apprehension of peri-prosthetic fracture. Our study highlights the importance of proximal bone stock rather than distal cavitation in determining the length of femoral stem.

168 total hip revisions of 162 patients with impaction bone grafting and cemented standard C-stem (done with standardized technique) between 1995 and 2008 at a tertiary referral centre were included. Revisions for infection and segmental bone defects were excluded. Serial radiographs were retrospectively analysed by two people independently, using Endoklinik classification, Gruen zones and more and outcomes were analysed.

Mean follow-up of the 168 revision hips was 10.5 years (range 5 – 19.1 years). 14 patients (8.3%) were re-revised, reasons being, persistent deep infection (1.8%), repeated dislocations (1.2%), cup loosening (4.8%) and stem loosening (1.2%). Only 1 patient (0.6%) was re-revised due to stem loosening alone. No peri-prosthetic fractures or stem breakage were identified.

Use of standard stem length in hip revisions with impaction bone grafting doesn't increase the risk of peri-prosthetic fractures even during long term follow up period. This questions the principle of bypassing the distal cavitation of femur by 2 cortical diameters with the use of long stem. In our experience, a good proximal femur support aids in the performance of standard length cemented stems in revision for aseptic loosening irrespective of grade of distal cavitation for cavitory defects of femur treated with impaction bone grafting.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 104 - 104
1 Mar 2017
Yamane S Moro T Kyomoto M Watanabe K Takatori Y Tanaka S Ishihara K
Full Access

Artificial knee joints are continuously loaded by higher contact stress than artificial hip joints due to a less conformity and much smaller contact area between the femoral and tibial surfaces. The higher contact stress causes severe surface damage such as pitting or delamination of polyethylene (PE) tibial inserts. To decrease the risks of these surface damages, the oxidation degradation of cross-linked polyethylene (PE) induced by residual free radicals resulting from gamma-ray irradiation for cross-linking or sterilization should be prevented. Vitamin E (VE), as an antioxidant, blended PE (PE(VE)) has been used to solve the problems. In addition, osteolysis induced by PE wear particles, bone cement and metallic debris is recognized as one of the important problems for total knee arthroplasty (TKA). To decrease the generation of PE wear particles, we have developed the bearing surface mimicking the articular cartilage; grafting a biocompatible polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), onto the PE surface having high wear resistance. In this study, we have evaluated the surface, mechanical under severe oxidative condition, and wear properties of PMPC-grafted cross-linked PE(VE) (PMPC-CLPE(VE)) material for artificial knee joints.

Untreated and PMPC-grafted 0.1 mass% VE-blended PE (GUR1020E resin) with a gamma-ray irradiation of 100 kGy for cross-linking and 25 kGy for sterilization were prepared (CLPE(VE) and PMPC-CLPE(VE), respectively). Surface properties were evaluated by Fourier-transform infrared (FT-IR) spectroscopy and transmission electron microscope (TEM) observations. Surface wettability and frictional property were measured by static water contact angle measurement and ball-on-plate friction test. To evaluate the oxidation degradation resistance, mechanical and physical properties such tensile test, izod impact test, small punch test and cross-link density measurement before and after accelerated aging were measured. Wear properties of the tibial inserts were examined by using knee simulator in the combination of Co-Cr-Mo femoral components according to ISO14243-3. Gravimetric wear, volumetric penetration and the number of generated wear particles were measured.

By the FT-IR measurements and TEM observation, P–O peaks attributed to MPC unit and uniform PMPC layer with 100–200 nm thick was observed only on PMPC-CLPE(VE) surface. Static water contact angle of CLPE(VE) was almost 100 degree, while that of PMPC-CLPE(VE) decreased significantly to almost 35 degree. There was no significant difference in the mechanical and physical properties between CLPE(VE) and PMPC-CLPE(VE). Moreover, both the CLPE(VE) and PMPC-CLPE(VE) maintained these properties even after the accelerated aging of 12 weeks [Fig. 1]. Blended VE in CLPE would act as radical scavengers to prevent oxidation degradation. In the knee simulator wear test, the PMPC-CLPE(VE) tibial inserts showed about a half gravimetric wear compared to the CLPE(VE) tibial inserts [Fig. 2]. This would be due to the significant differences observed in wettability of the surface. Water thin film formed on the hydrated PMPC graft layer, would act as significantly efficient lubricant.

From these results, the PMPC-CLPE(VE) is expected to be one of the great bearing materials not only preventing surface damages due to higher contact stress and oxidation degradation but also improving wear resistance, and to provide much more lifelong artificial knee joints.

For any figures or tables, please contact authors directly (see Info & Metrics tab above).


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_12 | Pages 93 - 93
1 Jul 2014
Haddad F
Full Access

Introduction

The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use impaction allografting with cement. This has captured the attention of the orthopaedic community because of its potential for reconstituting femoral bone stock.

History

The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morselised bone with cement on the femoral side was first reported by the Exeter group.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 53 - 53
1 May 2014
Haddad F
Full Access

The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use impaction allografting with cement. This has captured the attention of the orthopaedic community because of its potential for reconstituting femoral bone stock.

The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morsellised bone with cement on the femoral side was first reported by the Exeter group. The great enthusiasm with which this technique has been received is related to its biological potential to increase bone stock. The rapid revascularisation, incorporation and remodelling of morsellised compacted cancellous allograft differs dramatically from structural allografting where bone ingrowth usually is limited to 2–3mm. Histological evidence for bony reconstitution has been presented from postmortem retrievals, and from biopsies at the time of trochanteric wire removal.

The size of the bone chips used as morsellised allograft is important. The graft behaves as a friable aggregate and its resistance to complex forces depends on grading, normal load and compaction. It is recommended that particles of 3–5mm in diameter make up the bulk of the graft. A bone slurry, such as that produced by blunted bone mills, or by the use of acetabular reamers or high speed burrs would not give satisfactory stability. A wide range of particle sizes is recommended in order to achieve the greatest stability. Future considerations will include the potential for either adding biomaterials to the allograft, or ultimately substituting it completely.

A satisfactory cement mantle is required to ensure the longevity of any cemented stem. The primary determinant of cement mantle thickness is the differential between the graft impactors and the final stem. All femoral impaction systems require careful design to achieve a cement mantle that is uninterrupted in its length and adequate in its thickness.

The technique of impaction allografting on the femoral side was first and most successfully reported using a highly polished stem with a double tapered geometry and no collar. It is thought to be ideal for this technique as it can subside within the cement mantle, thus generating hoop stresses on the cement which creeps, potentially maintaining physiological loads on the supporting bone. The extension of this technique to other stems has led to some controversy. Confounding factors such as surgical technique, the impaction system available, the type and size of allograft bone used, and the extent of the pre-operative bone loss, will undoubtedly continue to influence such comparisons. It appears that the exact stem configuration may not be as critical as its surface finish, the amount of graft impaction possible and the cement mantle produced.

Impaction allografting is the only technique currently available that reverses the loss of bone stock seen in a revision hip arthroplasty. Moreover, this technique does not sacrifice host tissue, and could facilitate further surgery. Impaction allografting, performed with great attention to detail using appropriate equipment, represents an exciting reconstructive solution for contained femoral defects. Its role in larger and combined defects remains open to scrutiny. Careful observation and cautious optimism are necessary as further refinements may well improve the predictability of the clinical results and expand the indications for this important addition to the armamentarium of the revision surgeon.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 98 - 98
1 May 2016
Oinuma K Tamaki T Kaneyama R Higashi H Miura Y Shiratsuchi H
Full Access

Introduction

Bulk bone grafting is commonly used in total hip arthroplasty (THA) for developmental dysplasia. However, it is a technically demanding surgery with several critical issues, including graft resorption, graft collapse, and cup loosening. The purpose of this study is to describe our new bone grafting technique and review the radiographic and clinical results.

Patients and Methods

We retrospectively reviewed 105 hips in 89 patients who had undergone covered bone grafting (CBG) in total hip arthroplasty for developmental dysplasia. We excluded patients who had any previous surgeries or underwent THA with a femoral shortening osteotomy. According to the Crowe classification, 6 hips were classified as group I, 39 as group II, 40 as group III, and 20 as group IV. Follow-up was at a mean of 4.1 (1 ∼ 6.9) years. The surgery was performed using the direct anterior approach. The acetabulum was reamed as close to the original acetabulum as possible. The pressfit cementless cup was impacted into the original acetabulum. After pressfit fixation of the cup was achieved, several screws were used to reinforce the fixation. Indicating factor for using CBG was a large defect where the acetabular roof angle was more than 45 degrees and the uncovered cup was more than 2 cm (Fig.1). The superior defect of the acetabulum was packed with a sufficient amount of morselized bone using bone dust from the acetabular reamers. Then, the grafted morselized bone was covered with a bone plate from the femoral head. The bone plate was fixed with one screw to compact the morselized bone graft. The patient was allowed to walk bearing full weight immediately after surgery. We measured the height of the hip center from the teardrop line and the pelvic height on anteroposterior roentgenograms of the pelvis and calculated the ratio of the hip center to the pelvic height. We defined the anatomical hip center as the height of the center less than 15 % of the pelvic height, which was nearly equal to 30 mm, because the mean pelvic height was 210 mm.