header advert
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

General Orthopaedics

FEMORAL STEM IMPACTION GRAFTING: EXTENDING THE ROLE OF CEMENT

Current Concepts in Joint Replacement (CCJR) – Winter 2014



Abstract

Introduction:

The reconstructive hip surgeon is commonly faced with complex cases where severe bone loss makes conventional revision techniques difficult or impossible. This problem is likely to increase in future, as there is a good correlation between the degree of bone loss seen and number of previous total hip operations. In such situations, one alternative is the use of impaction allografting with cement.

History:

The first clinical reports of impaction allografting on the femoral side were in relation to revision with cementless stems. The use of morselised bone with cement on the femoral side was first reported by the Exeter group.

Biology:

The great enthusiasm with which this technique has been received is related to its biological potential to increase bone stock. The rapid revascularization, incorporation and remodeling of morselised compacted cancellous allograft differs dramatically from structural allografting where bone ingrowth usually is limited to 2mm to 3mm. Histological evidence for bony reconstitution has been presented from postmortem retrievals, and from biopsies at the time of trochanteric wire removal.

Type of bone:

The size of the bone chips used as morselised allograft is important. The graft behaves as a friable aggregate and its resistance to complex forces depends on grading, normal load and compaction. It is recommended that particles of 3–5mm in diameter make up the bulk of the graft. A bone slurry, such as that produced by blunted bone mills, or by the use of acetabular reamers or high speed burrs would not give satisfactory stability. A wide range of particle sizes is recommended in order to achieve the greatest stability.

The cement mantle:

A satisfactory cement mantle is required to ensure the longevity of any cemented stem. The primary determinant of cement mantle thickness is the differential between the graft impactors and the final stem. All femoral impaction systems require careful design to achieve a cement mantle that is uninterrupted in its length and adequate in its thickness.

Stem design:

The technique of impaction allografting on the femoral side was first and most successfully reported using a highly polished stem with a double tapered geometry and no collar. It is thought to be ideal for this technique as it can subside within the cement mantle, thus generating hoop stresses on the cement which creeps, potentially maintaining physiological loads on the supporting bone. The extension of this technique to other stems has led to some controversy. Confounding factors such as surgical technique, the impaction system available, the type and size of allograft bone used, and the extent of the preoperative bone loss, will undoubtedly continue to influence such comparisons. It appears that the exact stem configuration may not be as critical as its surface finish, the amount of graft impaction possible and the cement mantle produced. The introduction of longer stems and impactors in the last decade has undoubtedly further increased the scope of this technique.

Conclusion:

Impaction allografting is the only technique currently available that reverses the loss of bone stock seen in a revision hip arthroplasty. Moreover, this technique does not sacrifice host tissue, and could facilitate further surgery. Impaction allografting, performed with great attention to detail using appropriate equipment, represents an exciting reconstructive solution for contained femoral defects.