header advert
Results 1 - 20 of 23
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 103 - 103
1 Jul 2014
Avnet S Salerno M Zini N Gibellini D Baldini N
Full Access

Summary. We demonstrate that osteoclast-like cells of GCT result from the spontaneous fusion and differentiation of CD14+ cells of the monoblastic lineage by an autocrine mechanism mediated by RANKL, rather than induced by stromal cells. This process is further enhanced by the simultaneous impairment of the negative feed-back regulation of osteoclastogenesis by interferon β. Introduction. Giant cell tumor of bone (GCT) is a benign osteolytic lesion with a complex histology, comprising prominent multinucleated osteoclast-like cells (OC), mononuclear stromal cells (SC), and monocyte-like elements. So far, most studies have focused on SC as the truly transformed elements that sustain osteoclast differentiation, while less attention has been paid on the monocyte-like cell fraction. On the contrary, we have previously shown that SC are non-transformed element that can induce osteoclastogenesis of monocytes at levels that do not exceed that of normal mesenchymal stromal cells. We therefore focused on CD14+ monocyte-like cells as an alternative key candidate for the pathogenesis of GCT. Methods. We isolated CD14+ enriched cell fraction from tumor samples by immunomagnetic separation. We analyzed CD14+ cells for ultrastructural morphology, mRNA levels of haematopoietic, monocytic, and dendritic markers, and for RANKL, and M-CSF. Due to the very high number of OC in GCT, we hypothesised that the IFN-b pathway might be impaired. In fact, IFN-b functions as a negative-feedback regulator that inhibits osteoclast differentiation. We assayed IFN-b mRNA and protein expression in both cultures and tumor samples. Finally, we verified the ability of CD14+ cells to spontaneously form osteoclasts. Results. In the CD14+ enriched fraction we identified two different cell populations, both positive for TRACP activity and negative for Ki-67 nuclear localization, one with an undefined histotype and the other showing characteristics of the monoblastic lineage, mainly monoblasts and promonocytes. Isolated cells were positive for CD45, MSE-1, RANK, CD14, and CD80, and negative for CD144, and were able to spontaneously form collagen-resorbing multinucleated cells, a process that was strongly impaired by the addition of osteoprotegerin. The expression of RANKL and M-CSF mRNA in cultured cells demonstrated the presence of an autocrine circuit inducing osteoclast formation. Finally, we found very low expression of IFN-b both in the in vitro formed OC and in tissue samples. Conclusions. These data show that CD14+ cells in GCT are monocyte-like cells that can spontaneously form bone-resorbing multinucleated cells through impaired IFN-b expression. Taken together, these data raise questions regarding the role of the CD14+ cell component and of their regulating mechanisms that may be relevant for the development of effective therapeutic strategies


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 46 - 46
1 Jan 2017
Errani C Leone G Cevolani L Spazzoli B Frisoni T Donati D
Full Access

The purpose of our study was to identify possible risk factors of patients with GCT of the long bones after curettage and packing the bone cavity with bone cement or bone allografts.

We retrospectively reviewed the records of 249 patients with GCT of the limbs treated at Musculoskeletal Oncology Department of our institution between 1990 and 2013, confirmed histologically and recorded in the Bone Tumor Registry. We reviewed 219 cases located in the lower limb and 30 of the upper limb. This series includes 135 females and 114 males, with mean age 32 years (ranging 5 to 80 yrs). According to Campanacci's grading system, 190 cases were stage 2, 48 cases stage 3, and 11 cases stage 1. Treatment was curettage (intralesional surgery). Local adjuvants, such as phenol and cement, were used in 185 cases; whereas in the remaining 64 cases the residual cavity was filled with allografts or autografts only.

Oncological outcome shows 203 patients alive and continuously disease-free (CDF), 41 patients NED1 after treatment of local recurrence (LR), 2 patients NED1 after treatment of lung metastases, 2 AWD with lung metastases. One patient died of unrelated causes (DOD).

LR rate was 15.3% (38 pts). Lung metastases rate was 1.6% (4 pts). In patients treated by curettage and cement (185 cases) LR was 12% (22 pts). Conversely, in patients treated curettage and bone allografts it was higher (16/64 cases), with an incidence of 25% of cases (p=0.004). Oncological complications seemed to be related with site, more frequently occurring in the proximal femur (p=0.037). LR occurred only in stage 2 or 3 tumors without statistical significance (p>0.05). The mean interval between the first surgical treatment and LR was 22 months (range: 3–89 mos). However, in the multivariate analysis no significant statistical effect on local recurrence rate could be identified for gender, patient's age, Campanacci's grading, or cement vs allografts. The only independent risk factor related to the local recurrence was the site, with a statistical significance higher risk for patients with GCT of the proximal femur (p= 0.008).

Our observation on the correlation of tumor location and risk of local recurrence is new. Therefore, special attention must be given to GCTs in the proximal femur. In fact, primary benign bone tumors in the proximal femur are difficult to treat due to the risk of secondary osteonecrosis of the femoral head or pathologic fracture.

Numerous methods of reconstructions have been reported. Among these, total hip arthroplasty (THA) or bipolar hip arthroplasty (BHA) should be avoided when possible as more cases are observed in young patients.

Therefore, we do not suggest different approach for the proximal femur. GCT in the proximal femur is much more difficult to treat than in other sites, but if curettage is feasible, the best way is to save the joint with a higher risk of local recurrence, knowing that the sacrifice of the hip articulation in case of recurrence is always possible with THA or BHA.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 105 - 105
1 Nov 2018
Kubo Y Motomura G Ikemura S Hatanaka H Fukushi J Hamai S Yamamoto T Nakashima Y
Full Access

Similar to the radiological findings in rapidly destructive arthrosis of the hip joint (RDA), subchondral insufficiency fracture of the femoral head (SIF) can result in progressive femoral head collapse of unknown etiology. We thus examined the osteoclast activity in hip joint fluid in SIF with progressive collapse in comparison to that in RDA. Twenty-nine hip joint fluid samples were obtained intraoperatively with whole femoral heads from 12 SIF patients and 17 RDA patients. SIF cases were classified into subgroups based on the presence of ≥2mm collapse on preoperative radiographs: SIF with progressive collapse (n=5) and SIF without progressive collapse (n=7). The levels of tartrate-resistant acid phosphatase (TRACP)-5b, interleukin-8, vascular endothelial growth factor (VEGF), and matrix metalloproteinase (MMP)-9 were measured. Numbers of multinuclear giant cells at the subchondral region were assessed histopathologically using mid-coronal slices of each femoral head specimen. Median levels of all markers and median numbers of multinuclear giant cells in SIF with progressive collapse were significantly higher than those in SIF without progressive collapse, while there were no significant differences in SIF with progressive collapse versus RDA. Regression analysis showed that the number of multinuclear giant cells correlated positively with the level of TRACP-5b in joint fluid. This study suggests an association of increased osteoclast activity with the existing condition of progressive collapse in SIF, which was quite similar to the findings in RDA. Therefore, high activation of osteoclast cell may reflect the condition of progressive collapse in SIF as well as RDA


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 82 - 82
4 Apr 2023
Kokozidou M Gögele C Pirrung F Hammer N Werner C Kohl B Hahn J Breier A Schöpfer M Meyer M Schulze-Tanzil G
Full Access

Although autografts represent the gold standard for anterior cruciate ligament (ACL) reconstruction, tissue-engineered ACLs provide a prospect to minimize donor site morbidity and limited graft availability. This given study characterizes the ligamentogenesis in embroidered poly(L-lactide-co-ε-caprolactone) (P(LA-CL)) / polylactic acid (PLA) constructs using a dynamic nude mice xenograft model. (P(LA-CL))/PLA scaffolds remained either untreated (co) or were functionalized by gas fluorination (F), collagen foam cross-linked with hexamethylene diisocyanate (HMDI) (coll), or gas fluorination combined with the foam (F+coll). Cell free constructs or those seeded for 1 week with lapine ACL ligamentocytes were implanted into nude mice for 12 weeks. Following explantation, biomechanical properties, cell vitality and content, histopathology of scaffolds (including organs: liver, kidney, spleen), sulphated glycosaminoglycan (sGAG) contents and biomechanical properties were assessed. Implantation of the scaffolds did not negatively affect mice weight development and organs, indicating biocompatibility. All scaffolds maintained their size and shape for the duration of the implantation. A high cell viability was detected in the scaffolds prior to and following implantation. Coll or F+coll scaffolds seeded with cells yielded superior macroscopic properties when compared to the controls. Mild signs of inflammation (foreign-body giant cells, hyperemia) were limited to scaffolds without collagen. Microscopical score values and sGAG content did not differ significantly. Although remaining stable in vivo, elastic modulus, maximum force, tensile strength and strain at Fmax were significantly lower in the in vivo compared to the samples cultured 1 week in vitro, but did not differ between scaffold subtypes, except for a higher maximum force in F+coll compared with F samples (in vivo). Scaffold functionalization with fluorinated collagen foam provides a promising approach for ACL tissue engineering. (shared first authorship). Acknowledgement: The study was supported by DFG grants SCHU1979/9-1 and SCHU1979/14-1


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 15 - 15
1 Dec 2021
Mohamed H
Full Access

Abstract. Background. Benign osteolytic lesions of bone represent a diverse group of pathological and clinical entities. The aim of this study is to highlight the importance of intraoperative endoscopic assessment of intramedullary osteolytic lesions in view of the rate of complications during the postoperative follow up period. Methods. 69 patients (median age 27 years) with benign osteolytic lesion had been prospectively followed up from December 2017 to December 2018 in a university hospital in Cairo, Egypt and in a level-1 trauma center in United Kingdom. All patients had been treated by curettage with the aid of endoscopy through a standard incision and 2 portals. Histological analysis was confirmed from intraoperative samples analysis. All patients had received bone allografts from different donor sites (iliac crest, fibula, olecranon, etc). None of them received chemo or radiotherapy. Results. Most of lesions were enchondroma (n=29), followed by Aneurysmal bone cyst (ABC) (n=16), Fibrodysplasia (n=13), Chondromyxoid fibroma (n=3), simple bone cyst (n= 3), non-ossifying fibroma (n= 3), giant cell tumour (n= 1) and chondromyxoid fibroma (n = 1). Site of lesion varied from metacarpals (n = 29), femur (n= 1), lower leg (n= 31), and upper limb (n=18). Complications happened only in 9 cases (pathological fractures (n=2), infection (n= 1), recurrence (n=3, all aneurysmal bone cyst), residual pain (n= 3, all in tibia). None of cases developed malignant transformation. Conclusion. Endoscopy is recommended in management of benign osteolytic bone lesions; as it aids in better visualization of the hidden lesions that are missed even after doing apparently satisfactory blind curettage. From our study the recurrence rate is 2% compared to the known 12–18% recurrence rate in the blind technique from literature


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 140 - 140
1 Nov 2021
Reifenrath J Kempfert M Kampmann A Angrisani N Glasmacher B Menzel H Welke B Willbold E
Full Access

Introduction and Objective. In the elderly population, chronic rotator cuff tears are often associated with high re-rupture rates after surgical tendon refixation. Implant materials, especially in combination with additives are supposed to positively influence healing outcome. Furthermore, adequate mechanical properties are crucial. In order to realize degradable implants with high specific surface area, polycaprolactone (PCL) was chosen as basic material and processed by electrospinning to achieve a high surface area for growth factor implementation and subsequent cell attachment. Materials and Methods. PCL (M. n. approx. 80,000 g/mol) was used to generate fibre mats by electrospinning (relative collector velocity 8 m/s; flow rate of 4 ml/h). Mechanical analysis was performed according to EN ISO 527–2:2012 with test specimen 1BA (5 mm in diameter). Maximum force at failure (Fmax) as well as stiffness were evaluated. For preclinical in vivo testing, a coating with CS-g-PCL was performed to increase cellular adhesion and biological integration. Native and TGF-ß3 loaded mats were examined in a chronic rat tendon defect model with dissection of the M. infraspinatus, four week latency and following refixation at the humerus with different PCL-fibre mats (approval Nr. 33.12–42502–04–15/2015). After 8 weeks, rats were finalized and tendon-bone insertions were analyzed biomechanically and via histological methods. Results. Electrospun PCL-fibre mats (n = 6) showed maximum forces of 2.19 ± 0.8 N and a stiffness of 0.38 ± 0.12 N/mm. Native rat infraspinatus tendons showed Fmax values of 28.4 ± 7.2 N and a stiffness of 11.8 ± 4.9 N/mm. After implantation, Fmax of the implant-tendon-regenerate was significantly lower in CS-g-PCL - fibre mat groups compared to native control tendons (mean 52 % of native tendon value). Functionalization with TGF-ß3 led to increased Fmax (78 % of the native tendon value). However, differences were not statistically significant. Histological evaluation revealed no differences between non loaded and TGF-ß3 loaded mats. The implants were strongly disintegrated. Granulation tissue and a high number of foreign body giant cells were present. Conclusions. Although mechanical properties of fabricated mats were low, loading of the fibre mats influenced the biomechanical outcome of refixed tendons, presumably due to their high potential for binding biological active substances like TGF-ß3. However, in ongoing studies these cell reactions, especially regarding polarization of macrophages and foreign body cells need to be characterized. This research project has been supported by the German Research Foundation “Graded Implants FOR 2180 – tendon- and bone junctions” WE 4262/6-2 and parts were published in J Tissue Eng Regen Med. 2020 Jan;14(1):186–197. doi: 10.1002/term.2985


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 2 - 2
1 Mar 2021
McAleese T Clesham K Moloney D Hughes A Faheem N Merghani K
Full Access

Abstract. Background. Schwannomas are slow-growing, benign tumours normally originating from the Schwann cells of the nerve sheath. Intraosseous schwannoma accounts for 0.175% of primary bone tumours and extremely rare especially outside the axial skeleton. Monoclonal gammopathy has been associated with soft tissue schwannomas but never with the intraosseous variety. Presenting problem. A 55-year-old woman with a background of monoclonal gammopathy of undetermined significance (MGUS) presented with a 2-year history of right thigh pain. CT scan showed a well defined, lytic lesion with a thin peripheral rim of sclerosis in the midshaft of the femur. MRI displayed a hyperintense, well marginated and homogenous lesion. Definitive diagnosis was made based on the classical histopathological appearance of schwannoma. Clinical management. We managed our patient with local curettage and prophylactic cephalomedullary nailing on the basis of a high mirel score. Discussion. Intraosseous schwannomas are poorly understood but most commonly reported in middle-aged women. Radiologically, their differential diagnosis includes malignant bone tumours, solitary bone cysts, aneurysmal bone cysts and giant cell tumours. As a result, they are usually diagnosed incidentally on histology. Although malignant transformation is possible in soft tissue schwannomas, all intraosseous schwannomas reported to date have been benign. This case demonstrates the importance of suspecting intraosseous schwannoma as a differential diagnosis for lytic bone lesions to avoid the overtreatment of patients. We also highlight monoclonal gammopathy of undetermined significance as a potential risk factor for a poorly understood disease and make recommendations about the appropriate management of these lesions. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 24 - 24
1 Jul 2014
Morrey M Lostis E Franklin S Hakimi O Mouthy P Baboldashti NZ Carr A
Full Access

Summary Statement. A novel biomimetic polydioxanone tendon patch with woven and electrospun components is biocompatible, recapitulates native tendon architecture and creates a tissue-healing microenvironment directed by a subpopulation of regenerative macrophages. The woven component provides tensile strength while the tendon heals. Introduction. There is great interest in the use of biomimetic devices to augment tendon repairs. Ideally, implants improve healing without causing adverse local or systemic reactions. Biocompatibility remains a critical issue prior to implantation into humans, as some implants elicit a foreign body response (FBR) involving inflammation, poor wound healing and even fistulae formation. Additionally, the effect on articular cartilage locally or systemically with placement of a juxta-articular implant has not been examined. The purpose of this study is to test the in vivo biocompatibility of a novel hybrid woven and electrospun polydioxanone patch in a rat tendon transection model. Patients and Methods. Sixty Lewis rats were divided into 4 groups in which the infraspinatus was surgically transected 3 mm from its insertion. Tendons were repaired with a woven and electrospun polydioxanone patch (PDOe) and 5-0 Prolene sutures. Vicryl and Silk patches or a simple Prolene suture repair served as comparators. Animals were sacrificed at 1, 2, 4, 6 and 12 weeks to examine the biocompatibility of the implants. Immunohistochemistry was used to examine macrophage subpopulations and hematoxylin and eosin staining was used to assess foreign-body giant cells and both analyzed with a one-way ANOVA with significance set at p<.05. Articular cartilage was scrutinised with semi-quantitative analysis. Hind paw inflammatory indices were used to determine the systemic effects and biomechanical testing the tensile strength of the materials over time. Results. The PDOe patch remained grossly quiescent at all time-points. There was a severe inflammatory reaction to Vicryl at one and 2-week time-points with gross exudate. Silk patches were associated with larger fibrous capsules at each time point. There were no adverse systemic effects and articular cartilage remained normal with no differences between materials to controls. Immunohistochemistry showed a significantly higher ratio of regenerative to inflammatory macrophages for the PDOe patch compared to other constructs at each time-point and similar to controls. Silk and Vicryl patches had a greater than 10-fold increase in foreign-body giant cells compared to the PDOe patch and controls (p<.05) suggesting incorporation rather than rejection and walling off of the biomaterial. Tensile strength of the PDOe patch increased in the first 2 weeks to greater than 90 N and gradually declined to a mean of 22 N at 12 weeks. Discussion/Conclusion. The novel PDOe patch appears to be biocompatible and illicit very little FBR in this rat tendon injury model. Importantly, there was no joint reaction to the biomaterial which has not been addressed previously. We believe the electrospun component of the patch recapitulates native tendon architecture creating a tissue healing microenvironment directed by a regenerative macrophage subpopulation. These results corroborate earlier in vitro work that showed incorporation of tenocytes within the electrospun scaffold. The woven component of the scaffold provides tensile strength as the tendon heals and begins to degrade after healing is underway making it less likely to elicit a FBR. Based on these and earlier in vitro data we believe this implant shows excellent biocompatibility and is ready to proceed to human trials


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 57 - 57
1 Nov 2018
Hohaus C Siegrist K Seeger J Meisel H
Full Access

The objective of this study was to investigate the effects of different doses rhBMP-2 on bone healing in an ovine lumbar interbody fusion model. In this study 22 sheep underwent two level lumbar interbody fusion using a ventrolateral approach with secondary dorsal fixation at L1/2 and L3/4. After randomization in one level a PEEK-cage was implanted filled with one of three doses rhBMP-2 (0,5mg; 1mg; 2mg) delivered on an ACS. The other level received an empty PEEK-cage or ACS filled cage. Animals were sacrificed after 3 and 6 months and decalcified histology was performed. This included histomorphological analysis well as histomorphometry of the tissues within the cage. At 3 months after surgery the groups treated with rhBMP-2 showed higher amounts of bone tissue within the cage. At 6 months the amounts of bone tissue increased in all groups, were still lower in the groups without growth factor. At 3 months there was only one active osteolysis in the cage/ACS. 7 of 8 segments of the rhBMP-2 groups had a compromised bone structure around the implant. These areas were filled with fibrous tissue and fibrocartilage. This finding was not detected in the groups without rhBMP-2 at 3 months. At 6 months most of the segments with an empty cage or cage/ACS showed a chronic inflammation. Predominant cells were macrophages and giant cells. The groups treated with rhBMP-2 showed only a few mild chronic inflammatory reactions. The well-known dose dependent effect of rhBMP-2 on bone healing could also be recognized in our study. Attention has to be payed to the proinflammatory properties of the growth factor. Consistent with other studies we found 2 strong inflammatory reactions, each one in the lowest and highest dose group. Also, the potential for causing transient bone resorptions, according to the results of others, was demonstrated. At 3 months 7 of 8 segments treated with rhBMP-2 showed compromised peri-implant bone. Osteoblasts, but not osteoclasts, were seen in the periphery of these areas. It can be concluded that there where bone resorptions which already merged into an increased osteoblastic activity. Usually resorptions occur between 2 and 12 weeks and are followed by a period of increased osteoblastic activity. This finding wasn't recognized at 6 months anymore. Striking is that at 6 months most of the segments without rhBMP-2 showed a compromised bone structure around the implant with a mild to mainly moderate chronic inflammatory reaction. This cannot be attributed to the growth factor. Also, the ACS is degraded at 6 months and is unlikely a possible explanation. Therefore, the cage as a reason must be considered and it has to be questioned whether PEEK is the optimal material for interbody cages


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 9 - 9
1 Apr 2018
Meisel HJ Hohaus C Siegrist K
Full Access

Introduction. The objective of this study was to investigate the effects of different doses rhBMP-2 on bone healing in an ovine lumbar interbody fusion model. Methods. In this study 22 sheep underwent two level lumbar interbody fusion using a ventrolateral approach with secondary dorsal fixation at L1/2 and L3/4. After randomization in one level a PEEK-cage was implanted filled with one of three doses rhBMP-2 (0,5mg; 1mg; 2mg) delivered on an ACS. The other level received an empty PEEK-cage or ACS filled cage. Animals were sacrificed after 3 and 6 months and decalcified histology was performed. This included histomorphological analysis as well as histomorphometry of the tissues within the cage. Results. At 3 months after surgery the groups treated with rhBMP-2 showed higher amounts of bone tissue within the cage. At 6 months the amounts of bone tissue increased in all groups, but were still lower in the groups without growth factor. At 3 months there was only one active osteolysis in the cage/ACS. 7 of 8 segments of the rhBMP-2 groups had a compromised bone structure around the implant. These areas were filled with fibrous tissue and fibrocartilage. This finding was not detected in the groups without rhBMP-2 at 3 months. At 6 months most of the segments with an empty cage or cage/ACS showed a chronic inflammation. Predominant cells were macrophages and giant cells. The groups treated with rhBMP-2 showed only a few mild chronic inflammatory reactions. Discussion. The well-known dose dependent effect of rhBMP-2 on bone healing could also be recognized in our study. Attention has to be payed for the proinflammatory properties of the growth factor. Consistent with other studies we found 2 strong inflammatory reactions, each one in the lowest and highest dose group. Also the potential for causing transient bone resorptions, according to the results of others, was demonstrated. At 3 months 7 of 8 segments treated with rhBMP-2 showed compromised peri-implant bone. Osteoblasts, but not osteoclasts, were seen in the periphery of these areas. It can be concluded that there where bone resorptions which already merged into an increased osteoblastic activity. Usually resorptions occur between 2 and 12 weeks and are followed by a period of increased osteoblastic activity. This finding wasn”t recognized at 6 months anymore. Striking is that at 6 months most of the segments without rhBMP-2 showed a compromised bone structure around the implant with a mild to mainly moderate chronic inflammatory reaction. This cannot be attributed to the growth factor. Also the ACS is degraded at 6 months and is unlikely a possible explanation. Therefore, the cage as a reason must be considered and it has to be questioned whether PEEK is the optimal material for interbody cages


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 18 - 18
1 Apr 2014
Halai M Gupta S Spence S Wallace D Rymaszewski L Mahendra A
Full Access

Primary bony tumours of the elbow account for approximately 1% of all osseous tumours. The delayed diagnosis is commonly reported in the literature as a result of lack of clinician familiarity. We present the largest series of primary bone tumours of the elbow in the English literature. We sought to identify characteristics specific to primary elbow tumours and compare these to the current literature. We discuss cases of misdiagnosis and reasons for any delay in diagnosis. The authors also recommend a collaborative protocol for the diagnosis and management of these rare tumours. A prospectively collected national database of all bone tumours is maintained by an independent clerk. The registry and case notes were retrospectively reviewed from January 1954 until June 2013. Eighty cases of primary osseous elbow tumours were studied. Tumours were classified as benign or malignant and then graded according to the Enneking spectrum. There were no benign latent cases in this series. All cases in this series required surgical intervention. These cases presented with persistent rest pain, with or without swelling. The distal humerus was responsible for the majority and most aggressive of cases. The multidisciplinary approach at a specialist centre is integral to management. Misdiagnosis was evident in 12.5 % of all cases. Malignant tumours carried a 5-year mortality of 61%. Benign tumours exhibited a 19% recurrence rate and in particular, giant cell tumour was very aggressive. The evolution in treatment modalities has clearly benefited patients. Clinicians should be aware that elbow tumours can be initially misdiagnosed as soft tissue injuries or cysts. The suspicion of a tumour should be raised in the patient with unremitting, unexplained non-mechanical bony elbow pain. We suggest an investigatory and treatment protocol to avoid a delay to diagnosis. With high rates of local recurrence, we recommend regular postoperative reviews


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 1 | Pages 32 - 37
1 Jan 1996
Allen M Brett F Millett P Rushton N

In ten male rats we inserted ceramic ‘drawing-pin’ implants in weight-bearing positions within the right proximal tibia. Two animals were killed 6 weeks after surgery and two more 14 weeks after surgery. The remaining six received intra-articular injections of either high-density polyethylene (4 rats) or saline (2 rats) at 8, 10 and 12 weeks after surgery. These animals were killed two weeks after the last injection. Histological examination of the bone-implant interface in the control animals showed appositional bone growth around the implant at both 6 and 14 weeks. Polyethylene, but not saline, caused a chronic inflammatory response with numerous foreign-body giant cells in periprosthetic tissues. Our model of a stable, weight-bearing bone-implant interface provides a simple and reliable system in which to study in vivo the effects of particulate materials used in orthopaedic surgery


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 307 - 307
1 Jul 2014
Chetan D
Full Access

Introduction. Hand tumors are usually rare and there is not much literature about series of cases. We have studied a series of 110 cases. Hand tumors do consists of both benign and malignant cases. Methods. We studied series of 110 cases at Karnataka Institute of Medical Sciences, Hubli and Mysore Medical College & Research Institute, Mysore. We retrospectively reviewed the records of 110 patients who underwent double ray amputations at our center over few years: few had amputations of the fourth and fifth rays and others amputation of the second and third rays. Mean age at surgery was 34 years (range, 10–45 years), and minimum follow up was 64 months (mean, 98 months; range, 64–136 months). Some patients had high-grade soft tissue sarcomas of the hand, synovial sarcomas, malignant peripheral nerve sheath tumors, and undifferentiated sarcoma. No patients had detectable metastases at surgery. Results. All patients were completely disease-free at latest follow up. One patient was alive with lung metastases detected 32 months after surgery. No patients developed local tumor recurrence. Functional assessment showed a mean Musculoskeletal Tumor Society score of 24 (range, 19–28) and mean grip strength 24% of the contra lateral side (range, 17%–35%). Conclusions. The majority of osseous tumors of the hand are benign. The surgeon who evaluates and treats osseous tumors of the hand has to be familiar with limb anatomy, tumor biology, various presentations of the tumors and the range of treatment possibilities and their limitations. Lesions in the hand more often present earlier in their course than those at other sites, just because they are more likely to superficial and easily noticed. Ganglion cyst is the most frequently encountered comprising 50–70% of benign tumors of hand. Enchondroma was the next common benign bone tumour followed by osteoid osteoma, osteoblastoma, aneurismal bone cyst, giant cell tumor, epidermoid cyst, and osteochondroma. Although malignant neoplasms in the hand that arise from tissues other than the skin are very rare, the hand may be the site of distant breast, lung, kidney, esophagus, or colon adenocarcinoma metastases, most of which have a predilection for the distal phalanges. Malignant tumours of the hand are rare, although there remain many instances in which marginal excisions are performed for unsuspected malignant hand lesions. Suboptimal biopsy incisions and inadvertent contamination during these excisions may result in larger resections or amputations being necessary to ensure complete removal of the tumour with negative margins


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 5 | Pages 849 - 856
1 Sep 1997
Wang W Ferguson DJP Quinn JMW Simpson AHRW Athanasou NA

Abundant implant-derived biomaterial wear particles are generated in aseptic loosening and are deposited in periprosthetic tissues in which they are phagocytosed by mononuclear and multinucleated macrophage-like cells. It has been stated that the multinucleated cells which contain wear particles are not bone-resorbing osteoclasts. To investigate the validity of this claim we isolated human osteoclasts from giant-cell tumours of bone and rat osteoclasts from long bones. These were cultured on glass coverslips and on cortical bone slices in the presence of particles of latex, PMMA and titanium. Osteoclast phagocytosis of these particle types was shown by light microscopy, energy-dispersive X-ray analysis and SEM. Giant cells containing phagocytosed particles were seen to be associated with the formation of resorption lacunae. Osteoclasts containing particles were also calcitonin-receptor-positive and showed an inhibitory response to calcitonin. Our findings demonstrate that osteoclasts are capable of phagocytosing particles of a wide range of size, including particles of polymeric and metallic bio-materials found in periprosthetic tissues, and that after particle phagocytosis, they remain fully functional, hormone-responsive, bone-resorbing cells


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 223 - 223
1 Jul 2014
Grupp T Kabir K Fritz B Schwiesau J Bloemer W Jansson V
Full Access

Summary Statement. To evaluate carbon-fiber-reinforced PEEK as alternative biomaterial for total disc arthroplasty a closed loop between biotribology (in vitro), application of sterile particle suspensions in the epidural space of rabbits and biological response in vivo was established. Introduction. To prevent adjacent level degeneration in the cervical spine, total disc arthroplasty (TDA-C) remains an interesting surgical procedure for degenerative disc disease. Short- or midterm complications are migration, impaired post-operative neurological assessment due to artefacts in x-ray and MRI diagnosis and substantial rates of heterotopic ossification. The idea was to create a TDA-C design based on a polymer-on-polymer articulation to overcome these limitations of the clinically established metal-on-polyethylene designs. The objective of our study was to characterise the biotribological behaviour of an experimental cervical disc replacement made out of carbon-fiber-reinforced (CFR) PEEK and evaluate the biological response of particulate wear debris in the epidural space in vivo. Materials & Methods. In vitro wear simulation acc. to ISO 18192-1 was performed for 10 million cycles on a clinically established TDA-C device (Aesculap, Tuttlingen) made of cobalt-chromium-on-polyethylene in a direct comparison to an experimental disc prototype made of CFR-PEEK. An estimation of particle size and morphology was done acc. to Affatato et al. [5] and sterile suspensions of comparable particles (size 90% < 1 µm) in phospate buffered saline (PBS) were produced [6] for the application in the epidural space of 36 white new zealand rabbits. The particle concentration was 1 mg/ml with a volume of 0.2 ml injected percutaneously using fluoroscopic guidance and the inflammatory response was assessed 3 and 6 months post-operatively in a direct comparison between the groups PBS (control), UHMWPE and CFR-PEEK. Results. The gravimetric wear rate was for the cobalt-chromium-on-polyethylene TDA-C device as a clinical reference 1.0 ± 0.1 mg/ million cycles, compared to 0.02 ± 0.02 mg/ million cycles for the experimental CFR-PEEK articulation (p < 0.001), whereas the cumulative amount of wear of the CFR-PEEK TDA-C prototypes (0.5 ± 0.23 mg/ million cycles) was decreased by an order of a magnitude compared to cobalt-chromium-on-polyethylene (12.1 ± 1.46 mg/ million cycles) (p < 0.001). For CFR-PEEK and UHMWPE most of the particles were observed in a submicron size range and the morphology was comparable. Histopathological examination demonstrated wear debris in the vertebral canal of injection sites surrounded by inflammatory cells. The inflammation was limited to the epidural space around the particles and polymer particles were associated by a low grade foreign body reaction comprising macrophages and multi-nucleated giant cells. CFR-PEEK particulate wear debris showed at least similar histopathological reactions than UHMWPE in the cervical epidural space. Conclusion. A closed loop between biotribology (in vitro), application of sterile particle suspensions in the epidural space of rabbits and biological response in vivo was established to evaluate carbon-fiber-reinforced PEEK as alternative biomaterial for total disc arthroplasty


The Journal of Bone & Joint Surgery British Volume
Vol. 83-B, Issue 8 | Pages 1182 - 1190
1 Nov 2001
Minovic A Milosev I Pisot V Cör A Antolic V

We analysed revised Mathys isoelastic polyacetal femoral stems with stainless-steel heads and polyethylene acetabular cups from eight patients in order to differentiate various types of particle of wear debris. Loosening of isoelastic femoral stems is associated with the formation of polyacetal wear particles as well as those of polyethylene and metal. All three types of particle were isolated simultaneously by tissue digestion followed by sucrose gradient centrifugation. Polyacetal particles were either elongated, ranging from 10 to 150 μm in size, or shred-like and up to 100 μm in size. Polyethylene particles were elongated or granules, and were typically submicron or micronsized. Polyacetal and polyethylene polymer particles were differentiated by the presence of BaSO. 4. , which is added as a radiopaque agent to polyacetal but not to polyethylene. This was easily detectable by back-scattered SEM analysis and verified by energy dispersive x-ray analysis. Two types of foreign-body giant cell (FBGC) were recognised in the histological specimens. Extremely large FBGCs with irregular polygonal particles showing an uneven, spotty birefringence in polarised light were ascribed to polyacetal debris. Smaller FBGCs with slender elongated particles shining uniformly brightly in polarisation were related to polyethylene. Mononucleated histiocytes containing both types of particle were also present. Our findings offer a better understanding of the processes involved in the loosening of polyacetal stems and indicate why the idea of ‘isoelasticity’ proved to be unsuccessful in clinical practice


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 41 - 41
1 Jul 2014
Grosse S Høl P Lilleng P Haugland H Hallan G
Full Access

Summary. Particulate wear debris with different chemical composition induced similar periprosthetic tissue reactions in patients with loosened uncemented and cemented titanium hip implants, which suggests that osteolysis can develop independent of particle composition. Introduction. Periprosthetic osteolysis is a serious long-term complication in total hip replacements (THR). Wear debris-induced inflammation is thought to be the main cause for periprosthetic bone loss and implant loosening. The aim of the present study was to compare the tissue reactions and wear debris characteristics in periprosthetic tissues from patients with failed uncemented (UC) and cemented (C) titanium alloy hip prostheses. We hypothesised that implant wear products around two different hip designs induced periprosthetic inflammation leading to osteolysis. Patients & Methods. Thirty THR-patients undergoing revision surgery were included: Fifteen patients had loose cemented titanium stems (Titan. ®. , DePuy) and 15 had well-fixed uncemented titanium stems (Profile, DePuy), but loose or worn uncemented metal-backed cups with conventional UHMWPE liners (Gemini, Tropic and Tri-Lock Plus, DePuy; Harris/Galante and Trilogy, Zimmer). A semi-quantitative histological evaluation was performed in 59 sections of periprosthetic tissues using light microscopy. Wear particles were counted by polarised light and high resolution dark-field microscopy. Additionally, particle composition was determined by SEM-EDXA following particle isolation using an enzymatic digestion method. Blood metal ions were determined with high resolution-ICP-MS. Results. The implants in the uncemented group were revised after a median of 15.7 years (range: 7.25–19.3) due to osteolysis and high wear of the polyethylene liner and metal backing resulting in gross metallosis, and/or cup loosening. The average lifetime of implants in the cemented group was only 6.5 years (range: 1.5–11.75) due to early stem loosening with large osteolysis pockets in the femur close to the cement mantle. Tissue examination revealed similar results for both groups: numerous mononuclear histiocytes and chronic inflammatory cells, a few neutrophils and multinucleated giant cells, and to some extent necrosis. The amount of metal particles per histiocyte positively correlated with the tissue reactions in the cemented, but not in the uncemented group. A higher particle load (medians: C: 14727 vs. UC: 1382 particles/mm. 2. , p<0.0001) was found in tissues adjacent to cemented stems, which contained mainly submicron ZrO. 2. particles. Particles containing pure Ti or Ti alloy elements (size range: 0.21 to 6.46 µm) were most abundant in tissues from the uncemented group. Here, also PE was more frequent, but accounted only for a small portion of total particles (2.8 PE/mm. 2. ). The blood concentrations of titanium (range: 3.8–138.5 microgram/L) and zirconium (cemented cases, range: 0.6–3.5 microgram/L) were highly elevated in cases with high abrasive wear and metallosis. Discussion/Conclusion. Phagocytosis of different wear particles by histiocytes induced a similar chronic inflammatory reaction in the periprosthetic tissues in both groups. ZrO. 2. particles, originating from bone cement degradation, dominated in the cemented group, while in the uncemented group the high abundance of pure Ti and Ti alloy particles of various sizes indicates wear of the metal-backed cups. The low density of polyethylene particles in the tissues suggests that they are not solely responsible for the tissue reactions and accompanying osteolysis. Our findings suggest that the chemical composition of wear particles plays a minor role in the mechanism of osteolysis. Particle size, load and ionic exposure might be more important


Bone & Joint 360
Vol. 9, Issue 1 | Pages 10 - 14
1 Feb 2020
Ibrahim M Reito A Pidgaiska O


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 8 | Pages 1097 - 1101
1 Aug 2006
Jambhekar NA Kulkarni SP Madur BP Agarwal S Rajan MGR

A retrospective series of 45 cases of chronic osteomyelitis collected over a period of 14 years was histologically classified into tuberculous osteomyelitis (25) and chronic non-granulomatous osteomyelitis (20). The tuberculous osteomyelitis group was divided into three subgroups: a) typical granulomas (13 cases); b) ill-defined granulomas (seven cases), and c) suspected granulomas (five cases). An in-house polymerase chain reaction amplifying the 245 bp nucleotide sequence, and capable of detecting 10 fg of DNA of Mycobacterium tuberculosis, was used on the DNA extracted from the paraffin blocks. The polymerase chain reaction was positive in 72% of cases (18) of tuberculous osteomyelitis, but when typical cases of tuberculous osteomyelitis with confirmed granulomas were considered (13), this increased to 84.6% (11). The chronic non-granulomatous osteomyelitis group gave positive polymerase chain reaction results in 20% of the cases (4).

Our preliminary study on tuberculous osteomyelitis shows that the polymerase chain reaction can be a very useful diagnostic tool, since a good correlation was seen between typical granulomas and polymerase chain reaction with a sensitivity of 84.6% and a specificity of 80%. In addition, our study shows that tuberculous osteomyelitis can be diagnosed in formalin-fixed paraffin-embedded tissues in the absence of typical granulomas.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 2 | Pages 270 - 275
1 Feb 2006
Orhan Z Cevher E Mülazimoglu L Gürcan D Alper M Araman A Özsoy Y

Ciprofloxacin hydrochloride-loaded microspheres were prepared by a spray-drying method using pectin and chitosan. The effects of different polymers and drug ratios were investigated.

The most appropriate carriers were selected by in vitro testing. A rat methicillin-resistant Staphylococcus aureus osteomyelitis model was used to evaluate the effects of the loaded microspheres.

The drug was released rapidly from the pectin carrier but this was more sustained in the chitosan formulation.

Chitosan microspheres loaded with ciprofloxacin hydrochloride were more effective for the treatment of osteomyelitis than equivalent intramuscular antibiotics.