Advertisement for orthosearch.org.uk
Results 1 - 7 of 7
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 70 - 70
1 Jul 2020
Queen R Schmitt D Campbell J
Full Access

Power production in the terminal stance phase is essential for propelling the body forward during walking and is generated primarily by ankle plantarflexion. Osteoarthritis (OA) of the ankle restricts joint range of motion and is expected to reduce power production at that ankle. This loss of power may be compensated for by unaffected joints on both the ipsilateral and contralateral limbs resulting in overloading of the asymptomatic joints. Total ankle arthroplasty (TAA) has been shown to reduce pain and has the potential to restore range of motion and therefore increase ankle joint power, which could reduce overloading of the unaffected joints and increase walking speed. The purpose of this study was to test the hypothesis that ankle OA causes a loss of power in the affected ankle, compensatory power changes in unaffected lower limb joints, and that TAA will increase ankle power in the repaired ankle and reduce compensatory changes in other joints. One hundred and eighty-three patients (86 men, 97 women with average ages 64.1 and 62.4 years respectively) requiring surgical intervention for ankle OA were prospectively enrolled. Implant selection of either a fixed (INBONE or Salto Talaris) or mobile (STAR) bearing implant was based on surgeon preference. Three-dimensional kinematics and kinetics were collected prior to surgery and one year post-operatively during self-selected speed level walking using an eight-camera motion capture system and a series of force platforms. Subject walking speed and lower extremity joint power during the last third of stance at the ankle, knee, and hip were calculated bilaterally and compared before and after surgical intervention across the entire group and by implant type (fixed vs. mobile), and gender using a series of ANOVAs (JMP SAS, Cary, NC), with statistical significance defined as p < 0 .05. There were no gender differences in age, walking speed, or joint power. All patients increased walking as a result of surgery (0.87 m/s±0.26 prior to surgery and 1.13 m/s±0.24 after surgery, p < 0 .001) and increased total limb power. Normalized to total power (which accounts for changes in speed and distribution of power production across joints), prior to surgery the affected ankle contributed 19%±10% of total power while the unaffected ankle contributed 42%±12% (P < 0 .001). After surgery, the affected ankle increased to 25%±9% of total power and the unaffected ankle decreased to 38%±9% of total (P < 0.001). Other joints showed no significant power changes following surgery. Fixed bearing implants provide greater surgical ankle power improvement (61% versus 29% increase, p < 0 .002). Much of that change was due to the fact that those that received fixed-bearing implants had significantly lower walking speed and power before surgery. Ankle OA reduced ankle power production, which was partially compensated for by the unaffected ankle. TAA increases walking speed and power at the affected ankle while lowering power production on the unaffected side. The modifications in power production could lead to increased physical activity and reduced overloading of asymptomatic joints


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 45 - 45
1 May 2019
Berend K
Full Access

Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion preoperatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 modular fixed-bearing, 4 metal-backed nonmodular fixed-bearing, 8 resurfacing onlay, 10 all-polyethylene step-cut, and 19 mobile bearing designs; 5 knees failed due to infection, 5 due to wear and/or instability, 10 for pain or progression of arthritis, 8 for tibial fracture or severe subsidence, and 22 due to loosening of either one or both components. Insert thickness was no different between implants or failure modes. Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (average age: 66 years) performed from 1995 to 2009 with a minimum 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (2–262). The four most common reasons for failure were femoral or tibial loosening (55%), progressive arthritis of the lateral or patellofemoral joints (34%), polyethylene failure (4%) and infection (3%). Mean follow-up after revision was 75 months. Nine of 175 knees (4.5%) were subsequently revised at an average of 48 months (6–123). The average Knee Society pain and function score increased to 75 and 66, respectively. In the present series, the re-revision rate after revision TKA from UKA was 4.5% at an average of 75 months. In a current study from our center, 184 patients (193 UKA) underwent revision procedures (1996–2015) with minimum 2-year follow-up. Mean age was 63.5 (37–84) years, body mass index was 32.3 (19–57) kg/m. 2. , and interval after UKA was 4.8 (0–35) years. Most prevalent indications for revision were aseptic loosening (42%), arthritic progression (20%) and tibial collapse (14%). At 6.1 years mean follow-up (2–20), 8 knees (4.1%) have required re-revision involving any part, which is similar to what we recently reported at 5.5 years in a group of patients who underwent primary TKA (6 of 189; 3.2%), and much lower than what we observed at 6.0 years in a recent report of patients who underwent aseptic revision TKA (35 of 278; 12.6%). In the study group, Knee Society clinical and function scores improved from 50.8 and 52.1 preoperatively to 83.4 and 67.6 at most recent evaluation, respectively. Re-revisions were for aseptic loosening (3), instability (2), arthrofibrosis (2), and infection (1). Compared to published individual institution and national registry data, re-revision rates of failed UKA are equivalent to revision rates of primary TKA and substantially better than re-revision rates of revision TKA. These data should be used to counsel patients undergoing revision UKA to TKA


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 63 - 63
1 Aug 2017
Lombardi A
Full Access

Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were all-polyethylene step-cut, and 19 (38%) were mobile bearing designs; 5 knees (10%) failed due to infection, 5 (10%) due to wear and/or instability, 10 (20%) for pain or progression of arthritis, 8 (16%) for tibial fracture or severe subsidence, and 22 (44%) due to loosening of either one or both components. Insert thickness was no different between implants (P=0.23) or failure modes (P=0.27). Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Failure mode was predictive of complexity. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (81 males, 87 females; average age of 66 years) performed from 1995 to 2009 with a minimum of 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (range: 2 months to 262 months). The four most common reasons for failure of the UKA were femoral or tibial loosening (55%), progressive arthritis of the lateral or patellofemoral joints (34%), polyethylene failure (4%) and infection (3%). Mean follow-up after revision was 75 months. Nine of 175 knees (4.5%) were subsequently revised at an average of 48 months (range 6 months to 123 months.) The rate of revision was 1.23 revisions per 100 observed component years. The average Knee Society pain and function score increased to 75 and 66, respectively. In the present series, the re-revision rate after revision TKA from UKA was 4.5 % at an average of 75 months or 1.2 revisions per 100 observed component years. In a current study from our center, 174 patients (180 UKA) underwent revision procedures (1996–2017). Most prevalent indications for revision were aseptic loosening (45%) arthritic progression (17%) and tibial collapse (13%). At 4 years mean follow-up, 5 knees (2.8%) have required re-revision involving any part, which is similar to what we recently reported at 5.5 years in a group of patients who underwent primary TKA (6 of 189; 3.2%), and much lower than what we observed at 6.0 years in a recent report of patients who underwent aseptic revision TKA (35 of 278; 12.6%). Compared to published individual institution and national registry data, re-revision of a failed UKA is equivalent to revision rates of primary TKA and substantially better than re-revision rates of revision TKA. These data should be used to counsel patients undergoing revision UKA to TKA


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_17 | Pages 68 - 68
1 Nov 2016
Lombardi A
Full Access

Converting UKA to TKA can be difficult, and specialised techniques are needed. Issues include bone loss, joint line approximation, sizing, and rotation. Determining the complexity of conversion pre-operatively helps predict the need for augmentation, grafting, stems, or constraint. In a 2009 study from our center, 50 UKA revised to TKA (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were all-polyethylene step-cut, and 19 (38%) were mobile bearing designs; 5 knees (10%) failed due to infection, 5 (10%) due to wear and/or instability, 10 (20%) for pain or progression of arthritis, 8 (16%) for tibial fracture or severe subsidence, and 22 (44%) due to loosening of either one or both components. Insert thickness was no different between implants (P=0.23) or failure modes (P=0.27). Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Failure mode was predictive of complexity. Reestablishing the joint line, ligamentous balance, and durable fixation are critical to assuring a primary outcome. In a 2013 multicenter study of 3 institutions including ours, a total of 175 revisions of medial UKA in 168 patients (81 males, 87 females; average age of 66 years) performed from 1995 to 2009 with a minimum of 2-year clinical follow-up were reviewed. The average time from UKA to revision TKA was 71.5 months (range 2 months to 262 months). The four most common reasons for failure of the UKA were femoral or tibial loosening (55%), progressive arthritis of the lateral or patellofemoral joints (34%), polyethylene failure (4%) and infection (3%). Mean follow-up after revision was 75 months. Nine of 175 knees (4.5%) were subsequently revised at an average of 48 months (range 6 months to 123 months). The rate of revision was 1.23 revisions per 100 observed component years. The average Knee Society pain and function score increased to 75 and 66, respectively. In the present series, the re-revision rate after revision TKA from UKA was 4.5% at an average of 75 months or 1.2 revisions per 100 observed component years. Compared to published individual institution and national registry data, re-revision of a failed UKA is equivalent to revision rates of primary TKA and substantially better than re-revision rates of revision TKA. These data should be used to counsel patients undergoing revision UKA to TKA


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_8 | Pages 106 - 106
1 May 2014
Berend K
Full Access

Converting unicompartmental knee arthroplasty (UKA) to total knee arthroplasty can be difficult, and specialised techniques are needed. Issues include bone loss, joint-line, sizing, and rotation. Determining the complexity of conversion preoperatively helps predict the need for augmentation, grafting, stems, or constraint. We examined insert thickness, augmentation, stem use, and effect of failure mode on complexity of UKA conversion. Fifty cases (1997–2007) were reviewed: 9 implants (18%) were modular fixed-bearing, 4 (8%) were metal-backed nonmodular fixed-bearing, 8 (16%) were resurfacing onlay, 10 (20%) were all-polyethylene step-cut, and 19 (38%) were mobile bearing designs; 5 knees (10%) failed due to infection, 5 (10%) due to wear and/or instability, 10 (20%) for pain or progression of arthritis, 8 (16%) for tibial fracture or severe subsidence, and 22 (44%) due to loosening of either one or both components. Complexity was evaluated using analysis of variance and chi-squared 2-by-k test (80% power; 95% confidence interval). Insert thickness was no different between implants (P=0.23) or failure modes (P=0.27). Stemmed component use was most frequent with nonmodular components (50%), all-polyethylene step-cut implants (44%), and modular fixed-bearing implants (33%; P=0.40). Stem use was highest in tibial fracture (86%; P=0.002). Augment use was highest among all-polyethylene step-cut implants (all-polyethylene, 56%; metal-backed, 50%; modular fixed-bearing, 33%; P=0.01). Augmentation use was highest in fracture (86%) and infection (67%), with a significant difference noted between failure modes (P=0.003). Failure of nonmodular all-polyethylene step-cut devices was more complex than resurfacing or mobile bearing. Failure mode was predictive of complexity. Reestablishing the joint-line, ligamentous balance, and durable fixation are critical to assuring a primary outcome


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 145 - 145
1 Jan 2016
Yoon S
Full Access

Introduction. In total knee arthroplasty, the alignment of leg depends on the alignment of the component. In unicompartmental knee arthroplasty, it is determined by the thickness of the implant relative to the bone excised mostly. After initial scepticism, UKA is increasingly accepted as a reliable procedure for unicompartmental knee osteoarthritis with the improvements in implant design, surgical technique and appropriate patient selection. Recently, computer assisted UKA is helpful in accuracy and less invasive procedure. But, fixed bearing or mobile bearing in UKA is still controversy. We compared the early clinical and radiological results of robot-assisted unicompartmental knee arthroplasty using a fixed bearing design versus a mobile type bearing design. Materials and Methods. A data set of 50 cases of isolated compartmental degenerative disease that underwent robot-assisted UKA using a fixed bearing design were compared to a data set of 50 cases using a mobile bearing type design. The operations were performed by one-senior author with the same robot system. The clinical evaluations included the Knee Society Score (knee score, functional score) and postoperative complications. The radiological evaluations was assessed by 3-foot standing radiographs using the technique of Kennedy and White to determine the mechanical axis and femoro-tibial angle for knee alignment. Operative factors were evaluated including length of skin incision, operation time, blood loss, hospital stay and intraoperative complications. Results. There were no statistically significant differences in operation time, skin incision size, blood loss and hospital stay. (p > 0.05) There were no significant differences in Knee Society Scores at last follow up. An average preoperative femorotibial alignment was varus alignment of −1° in both groups. Postoperative patients with fixed-bearing implants had an average +2.1° valgus and the patients with mobile bearing implants had +5.4° valgus in femorotibial alignment, which was different.(p<0.05) There was one case of medial tibia plateau fracture in fixed bearing group in 3 months postoperatively. And there were one case of liner dislocation with unstable knee in 6 weeks postoperatively and one case of femoral component loosening in 1 year postoperatively in mobile bearing group. There was no intraoperative complication. The average preoperative knee score was 45.8, which improved to 89.5 in fixed bearing group and 46.5, which improved to 91.2 in mobile bearing group at last followup. The average preoperative function score was 62.4 which improved to 86.5 in fixed bearing group and 60.7 which improved to 88.2 in mobile bearing group at last followup. Conclusion. In ourearly experience, two types of bearing of robot-assisted UKA groups showed no statistical differences in clinical assessment but there was statistical difference in postoperative radiological corrected alignment. But in aspect of early complications, we think that mobile bearing seems to be requiring more attention in surgery


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 28 - 28
1 Sep 2012
Whitehead D MacDonald SJ Bourne RB McCalden RW
Full Access

Purpose. The mobile-bearing total knee arthroplasty was designed to increase the contact area with the polyethylene bearing, through the functional range of motion, and subsequently decrease the wear rate previously seen in fixed-bearing implants. In the literature there is no clear clinical advantage between the different designs in the short to mid-term follow-up. The purpose of this study was to compare the results between a cruciate retaining mobile-bearing design (SAL II, Sulzer) and two cruciate retaining fixed-bearing designs (AMK, Depuy, and the Genesis II, Smith and Nephew). Method. Ninety patients were randomised to receive either the mobile-bearing or one of the two fixed-bearing designs between 2000 and 2002. Patients were evaluated preoperatively and postoperatively using the WOMAC and the SF-12, both of which are validated scores. One patient was withdrawn due to dementia before three months and eleven patients died. Two patients were revised due to infection (both had received the SAL II). One patient was revised for aseptic loosening and one patient was revised for pain (both had received the Genesis II). Of the 74 patients (77 knees) that remain, they were last seen on average 6.4 years (2–10) after their surgery. Their average age at the surgery was 69.2 years (52–81). Results. There was no statistically significant difference between the change scores (postoperative score minus preoperative score) for each of the outcome measures between the mobile-bearing and the two fixed-bearing designs. Conclusion. In conclusion, after mid-term follow-up there is no clinical difference between a cruciate retaining mobile-bearing design and two cruciate retaining fixed-bearing designs