Intraoperative fractures although rare are one of the complications known to occur while performing a total hip arthroplasty (THA). However, due to lower incidence rates there is currently a gap in this area of literature that systematically reviews this important issue of complications associated with THA. Method: We looked into Electronic databases including PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), the archives of meetings of orthopaedic associations and the bibliographies of included articles and asked experts to identify prospective studies, published in any language that evaluated intra-operative fractures occurring during total hip arthroplasty from the year 1950-2020. The screening, data extraction and quality assessment were carried out by two researchers and if there was any discrepancy, a third reviewer was involved. Fourteen studies were identified. The reported range of occurrence of fracture while performing hip replacement surgery was found to be 0.4-7.6%. Major risk factors identified were surgical approaches, Elderly age, less Metaphyseal-Diaphyseal Index score, change in resistance while insertion of the
This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation. In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.Aims
Methods
Abstract. Introduction. The long-term biological success of cementless orthopaedic prostheses is highly dependent on osteointegration. Pre-clinical testing of new cementless implant technology however, requires live animal testing, which has anatomical, loading, ethical and cost challenges. This proof-of-concept study aimed to develop an in vitro model to examine implant osteointegration under known loading/micromotion conditions. Methods. Fresh cancellous bone cylinders (n=8) were harvested from porcine
Abstract. Objective. To estimate the effect of calcar collar contact on periprosthetic fracture mechanics using a collared fully coated cementless femoral stem. Methods. Three groups of six composite
Abstract. Objective. To estimate the effect of calcar collar separation on the likelihood of calcar collar contact during in vitro periprosthetic fracture. Methods. Three groups of six composite
Femoral head collapse due to avascular necrosis (AVN) is a relatively rare occurrence following intertrochanteric fractures; however, with over thirty-thousand intertrochanteric fractures per year in England and Wales alone, and an incidence of up to 1.16%, it is still significant. Often patients are treated with a hip fixation device, such as a sliding hip screw or X-Bolt. This study aimed to investigate the influence of three factors on the likelihood of head collapse: (1) implant type; (2) the size of the femoral head; and (3) the size of the AVN lesion. Finite element (FE) models of an intact femur, and
Study Aim. Femoral components used in total knee arthroplasty (TKA) are primarily designed on the basis of kinematics and ease of fixation. This study considers the stress-strain environment in the distal femur due to different implant internal geometry variations (based on current industry standards) using finite element (FE) analyses. Both two and three dimensional models are considered for a range of physiological loading scenarios – from full extension to deep flexion. Issues associated with micro-motion at the bone-implant interface are also considered. Materials and methods. Two (plane strain) and three dimensional finite element analyses were conducted to examine implant micro-motions and stability. The simple 2D models were used to examine the influence of anterior-posterior (AP) flange angle on implant stability. AP slopes of 3°, 7° and 11° were considered with contact between bone and implant interfaces being modeled using the standard coulomb friction model. The direction and region of loading was based on loading experienced at full extension, 90° flexion and 135° flexion. Three main model variations were created for the 3D analyses, the first model represented an intact distal femur, the second a primary
We implanted titanium and carbon fibre-reinforced plastic (CFRP) femoral prostheses of the same dimensions into five prosthetic femora. An abductor jig was attached and a 1 kN load applied. This was repeated with five control femora. Digital image correlation was used to give a detailed two-dimensional strain map of the medial cortex of the proximal
Six pairs of human cadaver femora were divided equally into two groups one of which received a non-cemented reference implant and the other a very short non-dependent experimental implant. Thirteen strain-gauge rosettes were attached to the external surface of each specimen and, during application of combined axial and torsional loads to the femoral head, the strains in both groups were measured. After the insertion of a non-cemented femoral component, the normal pattern of a progressive proximal-to-distal increase in strains was similar to that in the intact femur and the strain was maximum near the tip of the prosthesis. On the medial and lateral aspects of the proximal femur, the strains were greatly reduced after implantation of both types of implant. The pattern and magnitude of the strains, however, were closer to those in the intact femur after insertion of the experimental stem than in the reference stem. On the anterior and posterior aspects of the
Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.
Post-mortem retrieval of canine, cemented femoral components was analysed to assess the performance of these implants in the dog as a model for human total hip replacement (THR). Mechanical testing and radiological analysis were performed to determine the stability of the implant and the quality of the cement. Thirty-eight implants from 29 dogs were retrieved after time intervals ranging from 0.67 to 11.67 years. The incidence of aseptic loosening was 63.2%, much higher than in human patients (6% in post-mortem studies). Failure of the femoral implants began with debonding at the cement-metal interface, similar to that in implants in man. The incidence of aseptic loosening was much lower in bilateral than in unilateral implants. Significant differences were observed for three different designs of implant. While the dog remains the animal model of choice for THR, results from this study provide insight into interspecies differences in the performance of implants. For example, the performance of THR in dogs should be compared with that in young rather than in elderly human patients.