Benefits of early stabilization of femoral shaft fractures, in mitigation of pulmonary and other complications, have been recognized over the past decades. Investigation into the appropriate level of resuscitation, and other measures of readiness for definitive fixation, versus a damage control strategy have been ongoing. These principles are now being applied to fractures of the thoracolumbar spine, pelvis, and acetabulum. Systems of trauma care are evolving to encompass attention to expeditious and safe management of not only multiply injured patients with these major fractures, but also definitive care for hip and periprosthetic fractures, which pose a similar burden of patient recumbency until stabilized. Future directions regarding refinement of patient resuscitation, assessment, and treatment are anticipated, as is the potential for data sharing and registries in enhancing trauma system functionality. Cite this article:
Atypical femur fracture (AFF) is a well known complication of Bisphosphonate therapy. Due to prolonged suppression of bone re-modelling in these fractures, surgical complications are difficult to manage. The aim of this study was to analyze the causes of surgical complications in AFF fixations and provide algorithm for management. In this retrospective 10-year study (2010–2020), we identified patients surgically treated for AFF. We included patients who underwent revision surgery for any cause. Data collection included demographics, surgical complications, details of revision surgery and time to union.Abstract
Background
Method
Hip fractures frequently occur in elderly patients with osteoporosis and are rapidly increasing in prevalence owing to an increase in the elderly population and social activities. We experienced several recent presentations of TFNA nails failed through proximal locking aperture which requires significant revision surgery in often highly co-morbid patient population. The study was done by retrospective data collection from 2013 to 2023 of all the hip fractures which had been fixed with Cephalomedullary nails to review and compare Gamma (2013–2017) and TFNA (2017–2023) failure rates and the timing of the failures. Infected and Elective revision to Arthroplasty cases were excluded. The results are 1034 cases had been included, 784 fixed with TFNA and 250 cases fixed Gamma nails. Out of the 784 patients fixed with TFNA, 19 fixation failed (2.45%). Out of the 250 cases fixed with Gamma nails, 15 fixation failed (6%). Mean days for fixation failure were 323 and 244 days in TFNA and Gamma nails respectively. We conclude that TFNA showed remarkable less failure rates if compared to Gamma nails. At point of launch, testing was limited and no proof of superiority of TFNA over Gamma nail. Several failures identified with proximal locking aperture in TFNA which can be related to the new design which had Substantial reduction in lateral thickness at compression screw aperture.
Trochanteric fractures are associated with increasing incidence and represent serious adverse effect of osteoporosis. Their cephalomedullary nailing in poor bone stock can be challenging and associated with insufficient implant fixation in the femoral head. Despite ongoing implant improvements, the rate of mechanical complications in the treatment of unstable trochanteric fractures is high. Recently, two novel concepts for nailing with use of a helical blade – with or without bone cement augmentation – or an interlocking screw have demonstrated advantages as compared with single screw systems regarding rotational stability and cut-out resistance. However, these two concepts have not been subjected to direct biomechanical comparison so far. The aims of this study were to investigate in a human cadaveric model with low bone density (1) the biomechanical competence of cephalomedullary nailing with use of a helical blade versus an interlocking screw, and (2) the effect of cement augmentation on the fixation strength of the helical blade. Twelve osteoporotic and osteopenic femoral pairs were assigned for pairwise implantation using either short TFN-ADVANCED Proximal Femoral Nailing System (TFNA) with a helical blade head element, offering the option for cement augmentation, or short TRIGEN INTERTAN Intertrochanteric Antegrade Nail (InterTAN) with an interlocking screw. Six osteoporotic femora, implanted with TFNA, were augmented with 3 ml cement. Four study groups were created – group 1 (TFNA) paired with group 2 (InterTAN), and group 3 (TFNA augmented) paired with group 4 (InterTAN). An unstable pertrochanteric OTA/AO 31-A2.2 fracture was simulated. All specimens were biomechanically tested until failure under progressively increasing cyclic loading featuring physiologic loading trajectory, with monitoring via motion tracking.Introduction and Objective
Materials and Methods
Aims: There are concerns over the physiological effects of intramedullary femoral fracture stabilisation in patients with pulmonary injury. This large animal study used invasive monitoring to obtain sensitive cardiopulmonary measurements and compared the responses of ‘Early Total Care’ (intramedullary fracture fixation) and ‘Damage Control’ (external fixation), after the induction of lung injury. Methods: Acute lung injury (PaO2/FiO2 <
200 mmHg) was induced in 12 invasively monitored and terminally anaesthetised sheep via oleic acid infusion into the right atrium. Each animal underwent surgical femoral osteotomy and fixation with either reamed intramedullary (n=6) or external fixation (n=6). Haemodynamic and arterial blood-gas measurements were recorded at baseline, 5, 30 and 60 minutes after fracture stabilisation. Results: The mean (+/− S.E.) PaO2/FiO2 fell significantly (p<
0.05) from 401 (+/− 39) to 103 (+/− 35) and 425 (+/− 27) to 122 (+/− 21) in the externally fixated and intramedullary nailed groups respectively after acute lung injury. The further combined effect of surgical osteotomy and fracture fixation produced a mean (+/− S.E.) PaO2/FiO2 of 98 (+/− 21) and 114 (+/− 18), in the externally fixated and intramedullary nailed groups immediately after surgery. This was not significantly different within or between groups. Similarly the pulmonary vascular resistance (PVR) measured at 5.8 (+/− 0.8) and 4.8 (+/− 0.7) after lung injury in the externally fixated and intramedullary nailed groups changed to 5.7 (+/− 0.5) and 4.0 (+/− 0.7) after surgical osteotomy and fracture fixation (no significant difference within or between groups). The PaO2/FiO2 or PVR was not significantly different at the monitored 5, 30 and 60 minute intervals after fracture stabilisation. Conclusion: Against a background of standardised acute lung injury, there was no further deterioration produced by the method of isolated
Purpose. There are concerns with regard to the physiological effects of reamed intramedullary femoral fracture stabilisation in patients who have received a pulmonary injury. This large animal study used invasive monitoring techniques to obtain sensitive cardiopulmonary measurements and compared the responses to Early Total Care (reamed intramedullary femoral fracture fixation) to Damage Control Orthopaedics (external fixation), after the induction of acute lung injury. We hypothesised a greater cardiopulmonary response to intramedullary fracture fixation. Method. Acute lung injury (PaO2/FiO2 < 200 mmHg) was induced in 12 invasively monitored and terminally anaesthetised male sheep via the infusion of oleic acid into the right atrium. Each animal underwent surgical femoral osteotomy and fixation with either reamed intramedullary (n=6) or external fixation (n=6). Simultaneous haemodynamic and arterial blood-gas measurements were recorded at baseline and at 5, 30 and 60 minutes after fracture stabilisation. Results. The mean (S.E.) PaO2/FiO2 fell significantly (p<0.05) from 359(37) to 107 (23) and 382 (33) to 128 (18) in the externally fixated and intramedullary nailed groups respectively as a result of the acute lung injury. The further combined effect of surgical osteotomy and subsequent fracture fixation produced a mean (+/− S.E.) PaO2/FiO2 of 114 (21) and 113 (12), in the externally fixated and intramedullary nailed groups respectively, immediately after surgery. This was not significantly different either within or between groups. Similarly the pulmonary vascular resistance (PVR) measured at 4.7 (0.9) and 4.2 (0.5) in the externally fixated and intramedullary nailed groups respectively after lung injury changed to 4.9 (0.7) and 4.3 (0.6) after surgical osteotomy and subsequent fracture fixation which, again was not significantly different either within or between groups. No significant difference in either PaO2/FiO2 or PVR was detected at the monitored 5, 30 and 60 minute intervals that followed fracture stabilisation. Conclusion. Against a background of standardised acute lung injury, there appeared to be no further deterioration produced by the method of isolated
Most hip fractures treated with modern internal
fixation techniques will heal. However, failures occasionally occur and
require revision procedures. Salvage strategies employed during
revision are based on whether the fixation failure occurs in the
femoral neck, or in the intertrochanteric region. Patient age and
remaining bone stock also influence decision making. For fractures
in young patients, efforts are generally focused on preserving the
native femoral head via osteotomies and repeat internal fixation.
For failures in older patients, some kind of hip replacement is
usually selected. Disuse osteopenia, deformity, bone loss, and stress-risers
from previous internal fixation devices all pose technical challenges
to successful reconstruction. Attention to detail is important in
order to minimise complications. In the majority of cases, good
outcomes have been reported for the various salvage strategies. Cite this article:
Although the vast majority of fractures of the proximal femur will heal with well-done internal fixation, occasionally failure of fixation will occur. Having effective salvage options is important to restore function and minimize complications. In general, it is logical to separate salvage options into those for fractures of the femoral neck, and those for fractures of the intertrochanteric region. Additionally, patient age and remaining bone stock should be considered. Femoral neck fracture fixation failure salvage, young patients: All efforts are focused on preserving the native femoral neck. Valgus producing osteotomy is typically indicated, and can be successful even with small patches of AVN. Femoral neck fracture fixation failure salvage, older patients: Total hip arthroplasty is generally most predictable. Be prepared for very poor bone quality. Supplement uncemented acetabular component with multiple screws. Be prepared to cement femoral component if necessary. Intertrochanteric fracture fixation failure salvage, young patients: Repeat internal fixation attempts with fixed angle devices (such as a 95 degree blade plate) and bone grafting generally preferred. Avoid varus of proximal fragment and target inferior femoral head bone. Intertrochanteric fracture fixation failure salvage, older patients: Total hip arthroplasty preferred. Long stems to bypass femoral shaft stress risers and “calcar replacement” stems may be necessary due to proximal bone defects. Trochanteric fixation must be stable. Results are generally good but trochanteric complaints are common.
Proximal femur fractures are increasing in prevalence, with femoral neck (FN) and intertrochanteric (IT) fractures representing the majority of these injuries. The salvage procedure for failed open reduction internal fixation (ORIF) is often a conversion to total hip arthroplasty (THA). The use of THA for failed ORIF improves pain and function, however the procedure is more challenging. The aim of this study was to investigate the clinical and radiographic outcomes in patients who have undergone THA after ORIF. This retrospective case-control study compared patients who underwent THA after failed ORIF to a matched cohort undergoing primary THA for non-traumatic osteoarthritis. From 2004 to 2014, 40 patients were identified. The matched cohort was matched for date of operation, age, gender, and type of implant. Preoperative, intraoperative, and postoperative data were collected and statistical analysis was performed. The cohort of patients with a salvage THA included 18 male and 22 female patients with a mean age of 73 years and mean follow up of 3.1 years. Those with failed fixation included 12 IT fractures and 28 FN fractures. The mean time between ORIF and THA was 2.1 years for IT fractures and 8.5 years for FN fractures (p=0.03). The failed fixation group had longer procedures, greater drop in hemoglobin, and greater blood transfusion rate (p<0.05). There was one revision and one dislocation in the failed fixation group with no revisions or dislocations in the primary THA group. Length of admission, medical complications, and functional outcome as assessed with a standardised hip score and were found not to be statistically different between the groups. Salvage THA for failed initial fixation of proximal femur fractures yields comparable clinical results to primary THA with an increased operative time, blood loss, and blood transfusion rate.
Periprosthetic femoral fractures are increasing in incidence, and typically occur in frail elderly patients. They are similar to pathological fractures in many ways. The aims of treatment are the same, including 'getting it right first time' with a single operation, which allows immediate unrestricted weightbearing, with a low risk of complications, and one that avoids the creation of stress risers locally that may predispose to further peri-implant fracture. The surgical approach to these fractures, the associated soft-tissue handling, and exposure of the fracture are key elements in minimizing the high rate of complications. This annotation describes the approaches to the femur that can be used to facilitate the surgical management of peri- and interprosthetic fractures of the femur at all levels using either modern methods of fixation or revision arthroplasty. Cite this article:
Failed operated intertrochanteric fractures (with screw cutout, joint penetration, varus collapse, nonunion, or femoral head avascular necrosis) pose treatment dilemmas. The ideal approach is re-osteosynthesis with autologous bone grafting. When the femoral head is unsalvageable, conversion to a prosthetic hip replacement is necessary. Thirty-seven patients with failed dynamic hip screw fixation (and unsalvageable femoral heads) were treated with cementless hip arthroplasty (13 underwent Bipolar Arthroplasty, 24 had Total Hip Arthroplasty) over a 5-year period (Dec 2005 to Nov 2010). Seven needed a modified trochanteric split, and the rest were managed by standard anterolateral approach. Abductor mechanism was reconstructed using strong nonabsorbable sutures (ethibond 5) or stainless steel wires. The calcar was partially reconstructed using remnant femoral head and cerclage wiring in a few cases.Introduction
Materials/Methods
Four matched pairs of fresh frozen human femora were used to compare the biomechanical properties in axial and torsional loading of a Locking Condylar Plate and a retrograde intramedullary nail. One-centimeter gap osteotomy was created in the supracondylar region to simulate an AO/OTA 33-A3 fracture. The instrumented specimens were then mechanically tested under physiologic conditions in axial and torsional loading to determine the stability of the constructs. This laboratory study enhances the biomechanical advantages of the Locking Condylar Plate when fixation stiffness is essential. Devices with head locking screws provide angular rigidity and maximize fixation stability in osteopenic bone. To compare the biomechanical properties in axial and torsional loading of a Locking Condylar Plate and a retrograde intramedullary nail. To determine the modes of failure of these two devices under axial loading. Four matched pairs of fresh frozen human femora were used. Plain film radiographs and Dexa scanning were performed to evaluate bone quality and to screen for pathologic lesions. For each pair, one femur was stabilized with the Locking Condylar Plate and the other with a retrograde nail. One-centimeter gap osteotomy was created in the supracondylar region to simulate an AO/OTA 33-A3 fracture. Radiographs were obtained to exclude iatro-genic fractures before mechanical testing. The instrumented specimens were then mechanically tested under physiologic conditions in axial and torsional loading to determine the stability of the constructs. Three-dimensional displacement across the fracture site was recorded. Finally, all femurs were loaded to fracture under axial loading. The modes of failure were determined by assessing final radiographs. The Locking Condylar Plate provided statistically significant greater rigidity both in axial ( This laboratory study enhances the biomechanical advantages of the Locking Condylar Plate when fixation stiffness is essential. Devices with head locking screws provide angular rigidity and maximize fixation stability in osteopenic bone.
There is conjecture on the optimal timing to administer bisphosphonate therapy following operative fixation of low- trauma hip fractures. Factors include recommendations for early opportunistic commencement of osteoporosis treatment, and clinician concern regarding the effect of bisphosphonates on fracture healing. We performed a systematic review and meta-analysis to determine if early administration of bisphosphonate therapy within the first month post-operatively following proximal
Background.
Using the Mayo Clinic definition (>62mm in women and >66mm in men), the “jumbo acetabular component” is the most successful method for acetabular revisions now, even in hips with severe bone loss. There are numerous advantages: surface contact is maximised; weight-bearing is distributed over a large area of the pelvis; the need for bone grafting is reduced; and usually, hip center of rotation is restored. The possible disadvantages of jumbo cups include: may not restore bone stock; may ream away posterior column or wall; screw fixation required; the possibility of limited bone ingrowth and late failure; and a high rate of dislocation due to acetabular size:femoral head ratio. The techniques for a successful jumbo revision acetabular component involve: sizing-“reaming” of the acetabulum, careful impaction to achieve a “press-fit”, and multiple screw fixation. We recommend placement of an ischial screw in addition to dome and posterior column screw fixation. Cancellous allograft is used for any cavitary defects. The contra-indications for a jumbo acetabular cup are: pelvic dissociation; inability to get a rim fit; and inability to get screw fixation. If stability cannot be achieved with the jumbo cup alone, then use of augment(s), bulk allograft, or cup-cage construct should be considered. Using titanium fiber-metal mesh components, we reported the 15-year survival of 129 revisions. There was 3% revision for deep infection and only 3% revision for aseptic loosening. There were 13 reoperations for other reasons: wear, lysis, dislocation, femoral loosening, and
The October 2024 Trauma Roundup360 looks at: Early versus delayed weightbearing following operatively treated ankle fracture (WAX): a non-inferiority, multicentre, randomized controlled trial; The effect of early weightbearing and later weightbearing rehabilitation interventions on outcomes after ankle fracture surgery; Is intramedullary nailing of femoral diaphyseal fractures in the lateral decubitus position as safe and effective as on a traction table?; Periprosthetic fractures of the hip: Back to the Future, Groundhog Day, and horses for courses; Two big bones, one big decision: when to fix bilateral femur fractures; Comparison of ankle fracture fixation using intramedullary fibular nailing versus plate fixation; Unclassified acetabular fractures: do they really exist?
Patient decision aids have previously demonstrated an improvement in the quality of the informed consent process. This study assessed the effectiveness of detailed written patient information, compared to standard verbal consent, in improving postoperative recall in adult orthopaedic trauma patients. This randomized controlled feasibility trial was conducted at two teaching hospitals within the South Eastern Sydney Local Health District. Adult patients (age ≥ 18 years) pending orthopaedic trauma surgery between March 2021 and September 2021 were recruited and randomized to detailed or standard methods of informed consent using a random sequence concealed in sealed, opaque envelopes. The detailed group received procedure-specific written information in addition to the standard verbal consent. The primary outcome was total recall, using a seven-point interview-administered recall questionnaire at 72 hours postoperatively. Points were awarded if the participant correctly recalled details of potential complications (maximum three points), implants used (maximum three points), and postoperative instructions (maximum one point). Secondary outcomes included the anxiety subscale of the Hospital and Anxiety Depression Scale (HADS-A) and visual analogue scale (VAS) for pain collected at 24 hours preoperatively and 72 hours postoperatively. Additionally, the Patient Satisfaction Questionnaire Short Form (PSQ-18) measured satisfaction at 72 hours postoperatively.Aims
Methods
Using the Mayo Clinic definition (>62mm in women and >66mm in men), the “jumbo acetabular component” is the most commonly used method for acetabular revisions now. There are numerous advantages: surface contact is maximised; weight-bearing is distributed over a large area of the pelvis; the need for bone grafting is reduced; and usually, hip center of rotation is restored. The possible disadvantages, or caveats, of jumbo cups include: may not restore bone stock; may ream away posterior column or wall; screw fixation required; the possibility of limited bone ingrowth and late failure; and a high rate of dislocation due to acetabular size:femoral head ratio. The techniques for a successful jumbo revision acetabular component involve: sizing-“reaming” of the acetabulum, careful impaction to achieve a “press-fit”, and multiple screw fixation. We recommend placement of an ischial screw in addition to dome and posterior column screw fixation. Cancellous allograft is used for any cavitary defects. The contraindications for a jumbo acetabular cup are: pelvic dissociation; inability to get a rim fit; inability to get screw fixation; and the presence of <50% living host bone. If stability cannot be achieved with the jumbo cup alone, then use of augment(s), bulk allograft, or cup-cage construct should be considered. Our results with the jumbo acetabular cups in revision arthroplasty have been reported. Using predominantly titanium fiber-metal mesh components, we reported the 15-year survival of 129 revisions. There was 3% revision for deep infection and only 3% revision for aseptic loosening. There were 13 reoperations for other reasons: wear, lysis, dislocation, femoral loosening, and
Introduction. To compare the union rates and post-operative mobility of antegrade intramedullary nailing of osteoporotic traumatic supracondylar femoral fractures (AO classification A to C2) with those of plating. Materials/Methods. We studied any traumatic intra or extra-articular supracondylar femoral fracture from 2005–2010. Patients were either admitted directly to our level 1 trauma centre or were referred from another hospital. Nineteen patients were identified, consisting of primarily fixation with five antegrade nails and fourteen plates. We defined osteoporotic bone as being present in anyone over sixty years old or who had a clinical diagnosis. One nail and six plates were excluded due to young age or fracture severity. This left four nails, six less invasive stabilisation system plates and two dynamic condylar screw plates. Both groups were comparable with respect to age, sex and AO fracture classification. Results. There was a significant difference in achieving union between the two groups (p=0.040). Union occurred within three months in all four fractures in the nail group but only three fractures (38%) united after primary fixation in the plate group. There were two failures due to screw pullout, one failure due to screw breakage, one broken plate after delayed-union and one screw breakage after non-union. The patients in the nail group had better mobility and less pain than the plate group but the difference was not statistically significant. Conclusion. We have shown that for patients with osteoporotic, supracondylar