Aim. Bacterial identification in musculoskeletal infection is sometimes difficult and treatment strategy difficult facing unknown pathogen agent. We wonder if the delay of incubation and the preservation conditions of the samples between surgical procurement and subculture on plates have an influence. Method. 25 cm³ bone fragments were obtained from femoral heads retrieved during hip arthroplasty and excluded for bone transplant donation. Informed consent was obtained from the donor for research purpose. The study was approved by the Ethic Committee (N°B403201317725). Bone fragments were immersed for 30 minutes under gently agitation (140 RPM) at 35°C in a physiologic solution (negative control) or two solutions with two concentrations of staphylococcus epidermidis (0.5 Mc Farland or 1.5× 108 bacteria and 7.5×102 bacteria). Bone samples were separated and preserved at room temperature or at 4°C until seeded on Petri Plates to observe the influence of preservation conditions. Samples were plated after different delays (T0, T30min, T1H, T2H, T4H, T6H, T8H, T12H, T16H, T24H et T48H) to observe the influence of delay of culture. Experiments were repeated 5 times. When culture was positive, results were expressed with the number of colony. Results. We observed a regular diminution of number of colonies with the delay of culture. The number of colony goes to zero after 40 hours when the samples have been preserved at room temperature. Differences were not significant between preservation at room temperature and at 4°C for delay inferior to 04 hours but become significant for higher delay of culture in favor of low temperature preservation. With a low bacterial bioburden, no colony was recovered after a delay of 06 hours. False positive results were observed in 4% of the negative control. Conclusions. This
To demonstrate the effect of location of the split of the plaster on the raised intercompartmental pressure in the volar and dorsal compartments. Artificial forearm skeleton was used along with two half litre saline bags on ether side representing volar and dorsal forearm compartment. A single layer of cotton wool with half width overlap was applied followed by three rolls of 10cm x 2.5 m plaster of paris. This was then left to dry for four hours. Both the saline bags had an eighteen gauge catheter inserted that was connected to the central venous pressure monitoring line on the anaesthetic machine. Baseline pressure in mmHg was recorded. Normal saline was then injected in both the bags so as to raise the pressure to 50 mmHg in each compartment. POP cast was then split, spread and then the wool was cut down to the saline bags while continually monitoring the pressures. The respective change in the pressure at the end of each step was recorded. Six simulated forearm models had dorsal splits and an equal number had volar splits. The effect of the site and various steps of splitting on the drop in respective compartment pressures was compared.Aim
Methods
Aim. The aim of this study is to evaluate if the gentamycin elution from bone cement is influenced by the timing of application of the antibiotic powder. Method. This was an experimental in vitro study that compared the elution properties of different formulation of gentamycin from a commercially available hip, knee and shoulder cement spacers. Four different
Introduction. Achieving durable implant–host bone fixation is the major challenge in uncemented revision hip arthroplasty when significant bone stock deficiencies are encountered. The purpose of this study was to develop an
Background. Surgical site infection following spine surgery is associated with increased morbidity, mortality and increased cost for the health care system. The reported pooled incidence is 3%. Perioperative antibiotic prophylaxis is a key factor in lowering the risk of acquiring an infection. Previous studies have assessed perioperative cefuroxime concentrations in the anterior column of the cervical spine with an anterior surgical approach. However, the majority of surgeries are performed in the posterior column and often involve the lumbar spine. Accordingly, the objective was to compare the perioperative tissue concentrations of cefuroxime in the anterior and posterior column of the same lumbar vertebra using microdialysis in an
Introduction. Initial stability of cementless total knee arthroplasty (TKA) tibial trays is necessary to facilitate biological fixation. Previous experimental and computational studies describe a dynamic loading micromotion test used to evaluate the initial stability of a design. Experimental tests were focused on cruciate retaining (CR) designs and walking gait loading. A FEA computational study of various constraints and activities found CR designs during walking gait experienced the greatest micromotion. This experimental study is a continuation of testing performed on CR and walking gait to include a PS design and stair descent activity. Methods. The previously described experimental method employed robotic loading informed by a custom computational model of the knee. Different TKA designs were virtually implanted into a specimen specific model of the knee. Activities were simulated using in-vivo loading profiles from instrumented tibia implants. The calculated loads on the tibia were applied in a robotic test. Anatomically designed cementless tibia components were implanted into a bone surrogate. Micromotion of the tray relative to the bone was measured using digital image correlation at 10 locations around the tray. Three PS and three CR samples were dynamically loaded with their respective femur components with force and moment profiles simulating walking gait and stair descent activities. Periods of walking and stair descent cycles were alternated for a total of 2500 walking cycles and 180 stair descent cycles. Micromotion data was collected intermittently throughout the test and the overall 3D motion during a particular cycle calculated. The data was normalized to the maximum micromotion value measured throughout the test. The experimental data was evaluated against previously reported computational finite element model of the micromotion test. Results. The maximum average micromotion was on the CR design during walking gait. The greatest CR micromotion during stair descent was 67% of the maximum. The maximum micromotion in the PS design was 55% of the CR walking maximum and occurred during stair descent. The next highest PS value was 52% during walking. The absolute difference in these values was under 3 µm. The majority of the PS micromotion values around the tray were less than 50% that of the maximum micromotion of the CR design. Discussion. The experimental continuation of this investigation into cementless tray stability aligned with computational results in this model. The computational model predicted the PS tray would have 50% of the micromotion of the CR design, which was close to the experimental test. For CR, the computational rank order for walking and stair descent was also the same in the experimental follow-up. Future work in this investigation will include continued validation of the computational and
Aim. Propionibacterium acnes (PA) is an important cause of shoulder prosthetic joint infections (SPJIs) for which the optimal treatment has not yet been determined. Rifampicin and Levofloxacin both showed not benefit in recent
Shear plane non unions: biomechanical study and clinical application using an all wire Illizarov frame. 60 degree osteotomy of plastic tibiae were stabilised using four different Ilizarov frame configurations. Models were loaded and shear displacement measured at the fracture site. The optimum frame design was identified and used in clinical practice. The transfracture locked olive wire frame model offered the least displacement in the
Purpose. Twelve case reports of distal femur fractures as post-operative complications after anterior cruciate ligament (ACL) reconstruction have been described in the literature. The femoral tunnel has been suggested as a potential stress riser for fracture formation. The recent increase in double bundle ACL reconstructions may compound this risk. This is the first biomechanical study to examine the stress riser effect of the femoral tunnel(s) after ACL reconstruction. The hypotheses tested in this study are that the femoral tunnel acts as a stress riser to fracture and that this effect increases with the size of the tunnel (8mm versus 10mm) and with the number of tunnels (one versus two). Method. Femoral tunnels simulating single bundle (SB) hamstring graft (8 mm), bone-patellar tendon-bone graft (10 mm), and double bundle (DB) ACL reconstruction (7mm, 6 mm) were drilled in fourth generation saw bones. These three experimental groups and a control group consisting of native saw bones without tunnels, were loaded to failure. Result. All fractures occurred through the tunnels in the double tunnel group whereas fractures did not consistently occur through the tunnels in the single tunnel groups. The mean fracture load was 6145 N 471 N in the native group, 5691 N 198 N in the 8 mm single tunnel group, 5702 N 282 N in the 10 mm single tunnel group, and 4744 N 418 N in the double tunnel group. The mean fracture load for the double tunnel group was significantly different when compared to native, 8 mm single bundle, and 10 mm single bundle groups independently (p value = 0.0016, 0.0060, and 0.0038 respectively). No other statistically significant differences were identified. Conclusion. An anatomically placed femoral tunnel in single bundle ACL reconstruction in our
Introduction. Wear debris induced osteolysis and loosening continue to be causes of clinical failure in total knee replacement (TKR). Laboratory simulation aims to predict the wear of TKR bearings under specific loading and motion conditions. However, the conditions applied may have significant influence on the study outcomes (1). The aim of this study was to examine the influence of femoral setup and kinematic inputs on the wear of a conventional polyethylene fixed bearing TKR through experimental and computational models. Methods. Six right Sigma CR fixed bearing TKRs (DePuy Synthes, Leeds, UK) with curved polyethylene inserts (GVF, GUR1020 UHMWPE) were tested in Prosim knee simulator (Simulator Solutions, UK). The femoral bearing was set up with the centre of rotation (CoR) on either on the distal radius of the implant (Distal CoR), as indicated by the device design, or according to the ISO specification (ISO CoR; ISO14243-3). The tests were conducted under ‘High Kinematics’ (2). It was necessary to reverse the direction of the anterior-posterior displacement for the tests conducted with the ISO centre of rotation to maintain the contact region within the insert surface (Reverse High Kinematics). Tests were conducted for three million cycles, lubricated with 25% bovine serum, with wear assessed gravimetrically. The computational wear model for the TKR was based on the contact area and an independent experimentally determined non-dimensional wear coefficient, previously validated against the experimental data (3). Results. Good agreement was found between our computational and
INTRODUCTION:. A discrepancy exists between biomechanical and clinical outcome studies when comparing cruciate-retaining (CR) versus posterior stabilized (PS) component designs. The purpose of this study is to re-evaluate
Experimental knee simulators for component evaluation or in vitro testing provide valuable insight into the mechanics of the implanted joint. The Kansas knee simulator (KKS) is an electro-hydraulic whole joint knee simulator, with five actuators at the hip, ankle and quadriceps muscle used to simulate a variety of dynamic activities in cadaveric specimens. However, the number and type of experimental tests which can feasibly be performed is limited by the need to make physical component parts, obtain cadaveric specimens and the substantial time required to carry out each test. Computational simulations provide a complementary toolset to experimental testing; experimental data can be used to validate the computational model which can subsequently be used for early evaluation and ranking of component designs. The objective of this study was to explore potential improvements to loading and boundary conditions in current computational/
Introduction. Joint mechanics and implant performance have been shown to be sensitive to ligament properties [1]. Computational models have helped establish this understanding, where optimization is typically used to estimate ligament properties for recreation of physically measured specimen-specific kinematics [2]. If available, contact metrics from physical tests could be used to improve the robustness and validity of these predictions. Understanding specimen-specific relationships between joint kinematics, contact metrics, and ligament properties could further highlight factors affecting implant survivorship and patient satisfaction. Instrumented knee implants offer a means to measure joint contact data both in-vivo and intra-operatively, and can also be used in a controlled experimental environment. This study extends on previous work presented at ISTA [3], and the purpose here was to evaluate the use of instrumented implant contact metrics during optimization of ligament properties for two specimens. The overarching goal of this work is to inform clinical joint balancing techniques and identify factors that are critical to implant performance. Methods. Total knee arthroplasties were performed on 4 (two specimens modeled) cadeveric specimens by an experienced orthopaedic surgeon. An instrumented trial implant (VERASENSE, OrthoSensor, Inc., Dania Beach, FL) was used in place of a standard insert. Experimentation was performed using a simVITROTM controlled robotic musculoskeletal simulator (Cleveland Clinic, Cleveland, OH) to apply intra-operative style loading and measure tibiofemoral kinematics. Three successive laxity style tests were performed at 10° knee flexion: anterior-posterior force (±100 N), varus-valgus moment (±5 Nm), and internal-external moment (±3 Nm). Tibiofemoral kinematics and instrumented implant contact metrics were measured throughout testing (Fig. 1). Specimen-specific finite element models were developed for two of the tested specimens and solved using Abaqus/Explicit (Dassault Systèmes). Relevant ligaments and rigid bone geometries were defined using specimen-specific MRIs. Virtual implantation was achieved using registration and each ligament was modeled as a set of nonlinear elastic springs (Fig. 1). Stiffness values were adopted from the literature [2] while the ligament slack lengths served as control variables during optimization. The objective was to minimize the root mean square difference between VERASENSE measured tibiofemoral contact metrics and the corresponding model results (Fig. 1). Results and Discussion. The models for both specimens successfully recreated joint kinematics with average errors less than 4° in rotations, and 3 mm in translations (not shown). Minus a systematic offset in θ for specimen 3, AFD and θ contact kinematics also realized good agreement for both specimens (Fig. 2). Contact forces were generally over-predicted, though both specimens recreated the experimental trends (Fig. 2). The present work shows continued progress towards simulation based tools that can be used for both research and to support the clinical decision making process. A separate ISTA submission presents assessment of these model's predictive capacity, while future work will evaluate additional specimens, and explore the sensitivity to uncertainties in
Introduction:. There is substantial range in kinematics and joint loading in the total knee arthroplasty (TKA) patient population. Prospective TKA designs should be evaluated across the spectrum of loading conditions observed in vivo. Recent research has implanted telemetric tibial trays into TKA patients and measured loads at the tibiofemoral (TF) joint [1]. However, the number of patients for which telemetric data is available is limited and restricts the variability in loading conditions to a small subset of those which may be encountered in vivo. However, there is a substantial amount of fluoroscopic data available from numerous TKA patients and component designs [2]. The purpose of this study was to develop computational simulations which incorporate population-based variability in loading conditions derived from in vivo fluoroscopy, for eventual use in computational as well as
A total of 38 patients with leprosy and localised nerve damage (11 median at the wrist and 37 posterior tibial at the ankle) were treated by 48 freeze-thawed skeletal muscle autografts ranging between 2.5 cm and 14 cm in length. Sensory recovery was noted in 34 patients (89%) and was maintained during a mean period of follow-up of 12.6 years (4 to 14). After grafting the median nerve all patients remained free of ulcers and blisters, ten demonstrated perception of texture and eight recognised weighted pins. In the posterior tibial nerve group, 24 of 30 repairs (80%) resulted in improved healing of the ulcers and 26 (87%) demonstrated discrimination of texture. Quality of life and hand and foot questionnaires showed improvement; the activities of daily living scores improved in six of seven after operations on the hand, and in 14 of 22 after procedures on the foot. Another benefit was subjective improvement in the opposite limb, probably because of the protective effect of better function in the operated side. This study demonstrates that nerve/muscle interposition grafting in leprosy results in consistent sensory recovery and high levels of patient satisfaction. Ten of 11 patients with hand operations and 22 of 25 with procedures to the foot showed sensory recovery in at least one modality.
We have prospectively studied the outcome of infections associated with implants which were retained and treated using a standardised antimicrobial protocol. Over a period of four years, we studied 24 consecutive patients who had symptoms of infection for less than one year, a stable implant, no sinus tract and a known pathogen which was susceptible to recommended antimicrobial agents. The infections involved hip prostheses (14), knee prostheses (5), an internal fixation device (4), and an ankle prosthesis (1). Twenty patients had a successful outcome at a median follow-up of 3.7 years (1.8 to 4.7); four had failure of the implant after a median follow-up of 1.2 years (0.3 to 2.5). The probability of survival without failure of treatment was 96% at one year (95% confidence interval (CI) 88 to 100), 92% at two years (95% CI 80 to 100) and 86% at three years (95% CI 72 to 100). Patients with a short-term infection but with a stable implant, no sinus tract and a known pathogen may be successfully treated by retention of the implant and the use of a standardised regimen of antimicrobial treatment.