Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 9 - 9
1 Dec 2017
Li HK Rombach I Zambellas R Warren S Mack D Hopkins S Hems-ley C Atkins B Rogers M McNally M Scarborough M
Full Access

Aim. Management of bone and joint infection can be technically complex and often requires a prolonged course of antibiotics. Traditionally, bone and joint infection management utilises nurse-led outpatient parenteral antibiotic therapy (OPAT) where adherence is unlikely to be an issue. However, with increasing evidence in favour of oral therapy, the question of adherence merits further consideration. We describe the adherence of both oral (PO) and self-administered intravenous (IV) antibiotics in the treatment of bone and joint infection using paper questionnaires (8-item Modified Morisky Adherence Score (MMAS)) and, in a subset of participants, electronic pill containers (Medication Event Monitoring Systems*). Method. All eligible participants enrolled in the OVIVA trial (2010–2015) were randomised to six weeks of either PO or IV antibiotic treatment arms. Self-administering patients were followed up with questionnaires at day 14 and 42. A subset of PO participants was also given the medication event monitoring system* in order to validate the adherence questionnaires. The results were correlated with treatment failures at one-year follow-up. Results. 1,054 participants were enrolled in the OVIVA study. At day 14, 68% of participants recorded high adherence in both the IV (N=72) and PO arms (N=303) using the 8-item MMAS. At day 42, only 51% maintained high adherence in the PO arm (N=323) as compared to a 68% in the self-administered IV arm (N=80). The medication event monitoring system* results at day 42 demonstrated that 51% of participants achieved adherence of 100% (range 45–100). There was no statistically significant correlation between adherence and treatment failure in either randomised treatment arm. Conclusions. This is the first large scale study to quantitatively assess compliance with antibiotics in bone and joint infections using established adherence tools. Our results suggest that oral antibiotic adherence decreases significantly over time. Despite the absence of apparent excess risk of therapeutic failure in this trial, we strongly advise careful patient education and adherence support in order to optimise clinical outcomes. Acknowledgements. The OVIVA study is funded by the National Institute for Health research (Health Technology Assessment); project number 11/36/29. *MEMS® Medication Event Monitoring System


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 31 - 31
1 Jan 2016
Stulberg SD Goyal N
Full Access

Introduction. The goal of tibial tray placement in total knee arthroplasty (TKA) is to maximize tibial surface coverage while maintaining proper rotation. Maximizing tibial surface coverage without component overhang reduces the risk of tibial subsidence. Proper tibial rotation avoids excess risk of patellar maltracking, knee instability, inappropriate tibial loading, and ligament imbalance. Different tibial tray designs offer varying potential in optimizing the relationship between tibial surface coverage and rotation. Patient specific instrumentation (PSI) generates customized guides from an MRI- or CT-based preoperative plan for use in TKA. The purpose of the present study was to utilize MRI information, obtained as part of the PSI planning process, to determine, for anatomic, symmetric, and asymmetric tibial tray designs, (1) which tibial tray design achieves maximum coverage, (2) the impact of maximizing coverage on rotation, and (3) the impact of establishing neutral rotation on coverage. Methods. In this prospective comparative study, MR images for 100 consecutive patients were uploaded into Materialise™ PSI software that was used to evaluate characteristics of tibial component placement. Tibial component rotation and surface coverage was analyzed using the preoperative planning software. Anatomic (Persona™), symmetric (NexGen™), and asymmetric (Natural-Knee II™) designs from a single manufacturer (Zimmer™) were evaluated to assess the relationship of tibial coverage and tibial rotation. Tibial surface coverage, defined as the proportion of tibial surface area covered by a given implant, was measured using Adobe Photoshop™ software (Figure 1). Rotation was calculated with respect to the tibial AP axis, which was defined as the line connecting the medial third of the tibial tuberosity and the PCL insertion. Results. When tibial surface coverage was maximized, the anatomic tray compared to the symmetric/asymmetric trays showed significantly higher surface coverage (82.1% vs 80.4/80.1%; p<0.01), significantly less deviation from the AP axis (0.3° vs 3.0/2.4°; p<0.01), and a significantly higher proportion of cases within 5° of the AP axis (97% vs 73/77%). When constraining rotation to the AP axis, the anatomic tray showed significantly higher surface coverage compared to the symmetric/asymmetric trays (80.8% vs 76.3/75.8%; p<0.01). No significant differences were found between symmetric and asymmetric trays. Discussion. We found that the anatomic tibial tray resulted in significantly higher tibial coverage with significantly less deviation from the AP axis compared to the symmetric and asymmetric trays. When rotation was constrained to the AP axis, the anatomic tray resulted in significantly higher tibial coverage than the symmetric and asymmetric trays. Tibial rotation is recognized as an important factor in the success of a total knee replacement. Maximizing coverage with the least compromise in rotation is the goal for tibial tray design. In this study, the anatomic tibia seemed to optimize the relationship between tibial surface coverage and rotation. This study additionally illustrates the way by which advanced preoperative planning tools (ie. MRI/computer reconstructions) allow us to obtain valuable information with regard to implant design


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 51 - 51
1 Oct 2014
Stulberg S Goyal N
Full Access

The goal of tibial tray placement in total knee arthroplasty (TKA) is to maximise tibial surface coverage while maintaining proper rotation. Maximising tibial surface coverage without component overhang reduces the risk of tibial subsidence. Proper tibial rotation avoids excess risk of patellar maltracking, knee instability, inappropriate tibial loading, and ligament imbalance. Different tibial tray designs offer varying potential in optimising the relationship between tibial surface coverage and rotation. Patient specific instrumentation (PSI) generates customised guides from an MRI- or CT-based preoperative plan for use in TKA. The purpose of the present study was to utilise MRI information, obtained as part of the PSI planning process, to determine, for anatomic, symmetric, and asymmetric tibial tray designs, (1) which tibial tray design achieves maximum coverage, (2) the impact of maximising coverage on rotation, and (3) the impact of establishing neutral rotation on coverage. MR images for 100 consecutive patients were uploaded into Materialise™ PSI software that was used to evaluate characteristics of tibial component placement. Tibial component rotation and surface coverage was analysed using the preoperative planning software. Anatomic (Persona™), symmetric (NexGen™), and asymmetric (Natural-Knee II™) designs from a single manufacturer (Zimmer™) were evaluated to assess the relationship of tibial coverage and tibial rotation. Tibial surface coverage, defined as the proportion of tibial surface area covered by a given implant, was measured using Adobe Photoshop™ software. Rotation was calculated with respect to the tibial AP axis, which was defined as the line connecting the medial third of the tibial tuberosity and the PCL insertion. When tibial surface coverage was maximised, the anatomic tray compared to the symmetric/asymmetric trays showed significantly higher surface coverage (82.1% vs 80.4/80.1%; p<0.01), significantly less deviation from the AP axis (0.3° vs 3.0/2.4°; p<0.01), and a significantly higher proportion of cases within 5° of the AP axis (97% vs 73/77%). When constraining rotation to the AP axis, the anatomic tray showed significantly higher surface coverage compared to the symmetric/asymmetric trays (80.8% vs 76.3/75.8%; p<0.01). No significant differences were found between symmetric and asymmetric trays. We found that the anatomic tibial tray resulted in significantly higher tibial coverage with significantly less deviation from the AP axis compared to the symmetric and asymmetric trays. When rotation was constrained to the AP axis, the anatomic tray resulted in significantly higher tibial coverage than the symmetric and asymmetric trays. Tibial rotation is recognised as an important factor in the success of a total knee replacement. Maximising coverage with the least compromise in rotation is the goal for tibial tray design. In this study, the anatomic tibia seemed to optimise the relationship between tibial surface coverage and rotation. This study additionally illustrates the way by which advanced preoperative planning tools (ie. MRI/computer reconstructions) allow us to obtain valuable information with regard to implant design