Ciprofloxacin is recommended as anti-biofilm therapy for gram-negative periprosthetic joint infection. With ciprofloxacin monotherapy, resistance in gram-negative bacteria was observed. Therefore, we evaluated
Aim
Method
Aim. We aimed to assess the incidence and the outcome of Gram-negative prosthetic-joint infections (PJI) in 3 international tertiary hospital. Method. We included patients with Gram-negative PJI at Humanitas Clinical and Research Hospital (Milan, Italy), Centre Hospitalier Universitaire Vaudois (Lausanne, Switzerland) and Hospital Parc de Salut Mar (Barcelona, Spain) between 2014 and 2018 in a retrospective cohort. We described the treatment's success rate according to Gram-negative species and type of surgical procedure. Results. In the present cohort we have 780 PJI out of which 71 (9.1%) were caused by Gram-negative bacteria (polymicrobial infection 30%,
Hypochlorous acid (HOCl) is a potent anti-bacterial agent which could reduce periprosthetic joint infection. Early infection complications in joint replacements are often considered to be due to local contamination at the time of surgery and result in a significant socioeconomic cost. Current theatre cleaning procedures produce “clean” operating theatres which still contain bacteria (colony forming units, CFU). Reducing this bacterial load may reduce local contamination at the time of surgery. HOCl is produced naturally in the human neutrophil and has been implicated as the primary agent involved in bacterial killing during this process. In vitro research confirms its efficacy against essentially all clinically relevant bacteria. The recent advent of commercial production of HOCl, delivered as a fog, has resulted in extensive use in the food industry. Reported lack of corrosion and high anti-bacterial potency are seen as two key factors for the use of HOCl in the orthopaedic environment. Prior work by the authors comparing human cell toxicity of HOCl, chlorhexidine and iodine solutions shows favourable results. This study evaluates use of neutral HOCl applied as a dry room fog to decrease bacteria in the operating theatre environment. Using an animal operating theatre as the test site, bacterial swabs were taken from ten 100cm. 2. sample areas before standard cleaning with detergent, after standard cleaning, and again after 60 minutes exposure to HOCl fog. After standard cleaning, 6 of 10 sample sites recorded significant bacterial growth (>10 CFU/100cm. 2. ). After exposure to HOCl fog, growth in all 10 sites was below detection limits (<10 CFU/100cm. 2. ). This was repeated with specific exposure to Staphylococcus aureus and
Aim. Currently, gram-negative bacteria (GNB), including multidrug-resistant (MDR-GNB) pathogens, are gaining importance in the aetiology of prosthetic joint infection (PJI). To characterize the antimicrobial resistance patterns of Gram-negative bacteria (GNB) causing hip prosthetic joint infections in elderly patients treated at a Brazilian tertiary academic hospital. Method. This is a retrospective, cross-sectional study of patients over 60 years of age undergoing hip arthroplasty from 2018 to 2023 at a tertiary academic trauma, which were diagnosed with hip prosthetic joint infection. PJI diagnosed was based on EBJIS criteria, in which intraoperative tissue cultures identified the pathogens. Demographics, reason for arthroplasty, type of implant and susceptibility patterns using disk diffusion method were analysed. Results. Overall, among 17 elderly patients diagnosed with hip infected arthroplasty, 45 bacterial isolated were identified. Debridement, irrigation, antibiotic and implant retention (DAIR) procedures due to uncontrolled infection occurred in 47.0% (n=8/17), and five patients underwent more than two DAIR surgeries. Tissue cultures yielded eleven different bacterial species, with GNB accounted for 64.4% (n=29/45) of pathogens. Klebsiella pneumoniae, Acinetobacter baumannii,
Aim. Prosthetic joint infections pose a major clinical challenge. Developing novel material surface technologies for orthopedic implants that prevent bacterial adhesion and biofilm formation is essential. Antimicrobial coatings applicable to articulating implant surfaces are limited, due to the articulation mechanics inducing wear, coating degradation, and toxic particle release. Noble metals are known for their antimicrobial activity and high mechanical strength and could be a viable coating alternative for orthopaedic implants [1]. In this study, the potential of thin platinum-based metal alloy coatings was developed, characterized, and tested on cytotoxicity and antibacterial properties. Method. Three platinum-based metal alloy coatings were sputter-coated on medical-grade polished titanium discs. The coatings were characterized using optical topography and scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). Ion release was measured using inductively coupled plasma optical emission spectrometry (ICP-OES). Cytotoxicity was tested according to ISO10993-5 using mouse fibroblasts (cell lines L929 and 3T3). Antibacterial surface activity, bacterial adhesion, bacterial proliferation, and biofilm formation were tested with gram-positive Staphylococcus aureus ATCC 25923 and gram-negative
Aim. Antibacterial activity of coatings based on metal and metal oxide nanoparticles (NPs) often depends on materials and biotic targets resulting in a material-specific killing activity of selected Gram-positive and Gram-negative bacteria, including drug-resistant strains. In this perspective, the NPs loading amount, the relative elemental concentration inside the nanogranular building blocks and the deposition method are of paramount importance when the goal is to widen the antimicrobial spectrum, but at the same time to avoid high levels of metal content to limit undesired toxic effects. Aim of the present study was evaluation of the antimicrobial properties of two multielement nanogranular coatings composed of Titanium-Silver and Copper and of Magnesium-Silver and Copper. Method. Ti-Ag-Cu and Mg-Ag-Cu NPs were deposited on circular cover glasses (VWR) by Supersonic Cluster Beam Deposition. Biofilm-producer strains of Staphylococcus aureus (methicillin susceptible and resistant), Staphylococcus epidermidis (methicillin susceptible and resistant),
Aim. The efficacy of various irrigation solutions in removing microbial contamination of a surgical wound and reducing the rate of subsequent surgical site infection (SSI), has been demonstrated extensively. However, it is not known if irrigation solutions have any activity against established biofilm. This issue is pertinent as successful management of patients with periprosthetic joint infection (PJI) includes the ability to remove biofilm established on the surface of implants and necrotic tissues. The purpose of this study was to evaluate the efficacy of various irrigation solutions in eradicating established biofilm, as opposed to planktonic bacteria, in a validated in vitro model. Method. Established biofilms of Staphylococcus aureus and
Aim. Bone and joint infections are frequent in African countries and their prevention and treatment remain a great challenge. This study aimed to determine the bacterial ecology and sensitivity of isolates to locally available antibiotics in orthopedic unit of a tertiary care hospital in Cameroun. Method. During a 12 months period, all the patients presenting with osteomyelitis or septic arthritis irrespective of the mechanism and the location were enrolled in this study. Intraoperative samples (biopsies) were taken and sent for microbiological analysis, and all strains isolated were tested for antibiotic sensitivity according to conventional methods. Results. on the 52 bacteriological analysis performed, 48 were positive. The most isolated germs were staphylococcus aureus (41.9 % of isolates), pseudomonas aeruginosa (14.5 %),
Aim. Phage therapy has attracted attention as a promising alternative treatment option for biofilm infections. To establish a successful phage therapy, a comprehensive stock of different phages covering a broad bacterial spectrum is crucial. We screened human and environmental sources for presence of lytic phages against selected bacteria. Methods. Saliva collected from 10 volunteers and 500 ml of sewage water were screened for the presence of lytic phages active against 20 clinical strains of Staphylococcus aureus and 10 of
Aim. Prosthetic joint infections (PJI) due to Enterobacter cloacae are rare and often severe. The aim of this study is to describe cases with E. cloacae PJI. Method. We conducted a retrospective and a monocentric study in an orthopedic unit where complex bone and joint infections are managed. From 2012 to 2016, we included patients with PJI which perioperative samples were positive with E. cloacae. We collected background, clinical, biological and microbiological data of the current infection, surgical and medical treatment, and the outcome of these patients. Results. A total of twenty patients were included which 8 were male. Location was hip in 14 cases, knee in 5 cases and ankle in one case. The median time between arthroplasty and revision for infection was 3 years. Fourteen patients had at least two surgeries for previous PJI. The median time between the last surgery and the revision for E. cloacae infection was 31 days. Eleven patients were infected by extended-spectrum beta-lactamases (ESBL) strains. Most frequently, the antibiotics used were carbapenem in 9 cases, cefepim in 7 cases, a quinolone in 7 cases and fosfomycin in 4 cases. Infection was cured in 10 cases (50%) with a median time of follow-up of 24 months. Five patients had a recurrent infection, three due to Staphylococcus epidermidis, one to Staphylococcus epidermidis and Propionibacterium acnes and one to
Aim. Gram-negative aerobic bacteria account for 10%-17% of periprosthetic joint infection (PJI). Due to its biofilm-activity, ciprofloxacin plays a key role in the treatment of gram-negative PJI. However, data about treatment outcome of these infections are conflicting. With this retrospective study we aim at evaluating characteristics and outcome of gram-negative PJI. Method. We retrospectively included consecutive patients with gram-negative PJI treated at our institution from 01/2013 to 03/2018. Diagnosis of PJI was defined by the proposed European Bone and Joint Infection Society (EBJIS) criteria. Growth of gram-negative aerobic bacteria was required in synovial fluid, periprosthetic tissue or sonication fluid. Clinical success (infection-free status) was defined as fulfillment of all of the following criteria: (i) unremarkable surgical site and no subsequent surgery (ii) no PJI related mortality and (iii) no long-term antimicrobial suppression therapy of >6 months. Results. A total of 76 patients with gram-negative PJI involving 45 hips, 26 knees, 3 elbows and 2 shoulders were analyzed. The median patient age was 76 years (range, 41–92 years). The route of infection was perioperative in 52 cases, hematogenous in 17 cases and contiguous in 5 cases. The most common isolated pathogens were
Aim. Revision surgery and debridement and implant retention are recognised approaches for managing prosthetic joint infections (PJI) but may not always be indicated. If the patient is unable to have or declines surgery, prolonged suppressive antibiotic therapy (PSAT) is an option. This study aims to define outcomes of PSAT from a single unit. Method. A retrospective study was performed. All cases of PJI involving the hip or knee between 2012 and 2017 were identified from our institutional database and cross referenced with patient notes. One hundred and seventy eight cases were identified. Of these, 23 (12.9%) (10 hips, 13 knees) were treated with PSAT. Infection was diagnosed based on the MSIS criteria in all cases and all cases were managed by a multidisciplinary team which included specialist microbiologists. One case of long term antifungal therapy was additionally identified. Co-morbidity was assessed using the Charlson co-morbidity index. Exacerbations of infection and need for further surgery were recorded. Results. The mean age was 72 years (Range 35–93 years). The mean Charlson-score was 4.3 (range 1–7). Mean follow up was 24 months (Range 1–54 months). Antibiotics were commenced within 3 months of surgery in 20 cases and between 2 and 4 year following surgery in the remainder. Prolonged antibiotic therapy followed debridement and implant retention in 12 cases, single stage revision in 4 cases and 2 stage revisions in 3 cases. The average number of surgical procedures undergone by each patient prior to starting antibiotic suppression therapy was 1.8 (Range 1–4 procedures). Staphylococcal species were isolated in 13 cases (MRSA 1, MSSA 5, Staph. Epidermidis 5, CONS 1, Staph Pasteuri 1).
Aim. We used a polymerase chain reaction (PCR) lateral flow assay1) to rapidly diagnose joint infection. We evaluated the usefulness of multiplex-PCR (PCR lateral flow assay: PCR-LF) using detailed clinical data. Method. A total of 35 synovial fluid samples were collected from 26 patients in whom bacterial infection was suspected, including 22 from knee joints, 11 from hip joints, and 2 from other joints. After purifying the DNA from the samples, multiplex PCR targeting two MRSA-associated genes (femA and mecA) and the bacterial 16S rRNA gene was performed. Amplified gene fragments were specifically detected with DNA probes immobilized on stick devices through DNA-DNA hybridization and visualization, enabling diagnosis of MRSA, MSSA, MRCNS, gram-positive, and/or gram-negative bacterial infection. Genetic identification of bacteria by determining the 16S rRNA gene sequence was also performed using multiplex PCR-positive samples. Finally, the usefulness of our PCR-LF method was evaluated using detailed clinical data. Results. The results of PCR-LF were 9 gram-positive and 1 gram-negative bacterial infections. Eleven bacterial species were identified based on 16S rRNA gene sequences. Ten (90.9%)of the eleven samples (bacterial species) were identified using our PCR-LF. Five samples were detected in bacterial cultures; two are MSSA, one is Streptococcus agalactiae, one is
Aim. Prosthetic joint infections (PJI) are devastating complications after hip arthroplasty and infection rates varies internationally between 0.76% to 1.24%. Hemi-arthroplasty (HA) is the gold standard treatment for dislocated femoral neck fractures. Recently, total hip arthroplasty (THA) has been suggested to generate even better outcomes. However, little is known about PJIs after hip fractures. The purpose of this study was to investigate PJIs after femoral neck fracture in a population-based sample. Methods. Clinical databases were harvested for all THA or HA procedures done for the treatment of femoral neck fractures at our hospital district (HUS) of 1.6 million inhabitants. Altogether, 3693 arthroplasty procedures for hip fractures were performed between 2011 to 2015. The original patient records of each case were reviewed. Complication(s) leading to readmission(s), the microbe(s), and the treatment protocol of each infection was recorded until the closing date (31.12.2016). The definition of PJI according to Musculosceletal Infection Society modified at the International Consensus meeting was used. Results. We detected 111 infections (10 THAs;101 HAs):42 superficial infections (1.1%) and 69 PJIs (1.9%). The PJI rate after THA was 3.7% (8/219) and 1.8% after HA (61/3474) (p=0.04;OR 2.12, 95%CI 1.00–4.49). Most PJIs in THA group (6/8) were treated by debridement, antimicrobials, and implant retention (DAIR) and two by 2-stage exchange. In the HA group the DAIR was the first surgical treatment for 51 PJIs (84%). Other treatment options used were girdlestone (n=3), one-stage exchange (n=2), lavation (n=2), and conservative treatment (n=3). The bacteria cultured at THA group were: Staphylococcus epidermidis (n=4), Staphylococcus aureus (n=3), Streptococcus agalactiae (n=2), and Staphylococcus haemolyticus and at the HA group Staphylococcus aureus (n=25, including 1 MRSA), Staphylococcus epidermidis (n=11), other coagulase negative staphylococci (n=7), Pseudomonas aeruginosa (n=6), Enterococcus faecalis (n=6),
Aim. To investigate the antimicrobial activity of a gentamicin-loaded bone graft substitute (GLBGS) in the prevention and eradication of bacterial biofilms associated with prosthetic joint infections (PJI). Method. The GLBGS (17,5 mg gentamicin/ml paste) with 40% hydroxyapatite/60% calcium sulfate. 1. was tested against biofilms of methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, methicillin-susceptible S. aureus (MSSA) ATCC 29213,
Introduction. The use of irrigation solution during surgical procedures is a common and effective practice in reduction of bioburden and the risk of subsequent infection. The optimal irrigation solution to accomplish this feat remains unknown. Many surgeons commonly add topical antibiotics to irrigation solutions assuming this has topical effect and eliminates bacteria. The latter reasoning has never been proven. In fact a few prior studies suggest addition of antibiotics to irrigation solution confers no added benefit. Furthermore, this practice adds to cost, has the potential for anaphylactic reactions, and may also contribute to the emergence of antimicrobial resistance. We therefore sought to compare the antimicrobial efficacy and cytotoxicity of irrigation solution containing polymyxin-bacitracin versus other commonly used irrigation solutions. Methods. Using two in vitro breakpoint assays of Staphylococcus aureus (ATCC#25923) and
This study aimed to determine the optimal formulation of antibiotic-loaded bone cement (ALBC) for periprosthetic joint infection (PJI) using both in vitro and in vivo models incorporating various combinations of gram-positive and gram-negative antibiotics. The in vitro antibiotic release characteristics and antibacterial capacities of ALBCs loaded with either 4 g of vancomycin or teicoplanin and 4 g of ceftazidime, imipenem, or aztreonam were measured against methicillin-susceptible S. aureus, methicillin-resistant S. aureus, coagulase-negative staphylococci, Pseudomonas aeruginosa and
Revision surgery and surgery in previously operated areas are associated with an increased infection risk. In such situations, aggressive surgical debridement may be necessary to control and eradicate the infection. Full thickness defects resulting from such debridement present as a challenge. In most cases, an association of various methods, both surgical and non-surgical, is necessary. Our goal is to describe the use of vaccum dressings as an effective way to deal with extensive and infected dorsolumbar surgical defects, while avoiding the use of myocutaneous flaps. This is a retrospective and descriptive case report based on data from clinical records, patient observation and analysis of complementary exams. We present the case of a 57-years-old obese woman with prior history of double approach with posterior instrumentation and spine arthrodesis (D3 to L4) due to severe dorsolumbar adolescent idiopathic scoliosis. She presented to our consult 42 years after surgery, complaining of lower back pain. Clinical observation and imaging exams demonstrated degenerative disc disease in L5-S1 and L5 anterolisthesis. There was also distal instrumentation breakage (right L4 pedicular screw and contralateral rod) with pseudarthrosis suspicion. Distal instrumentation was removed and no pseudarthrosis was found. Therefore, posterior instrumentation and arthrodesis was performed, from L4 to S1. Surgery went without complications. One week after surgery, patient developed fever and inflammatory signs at the surgical incision, with purulent oozing.
Correct diagnosis of infection is crucial for an adequate treatment of orthopedic implant-related infections. In the orthopedic field, infections can be difficult to diagnose(1). As a consequence, patients may suffer from an undiagnosed and untreated implant-related infection. To solve this problem, we are searching for a diagnostic method to detect these so-called low-grade infections. The technique fluorescence in situ hybridization (FISH) can detect slow-growing and even dead bacteria. Further, as FISH results are available within an hour after tissue collection it is an ideal candidate for diagnostic purposes. AIM: to evaluate the FISH technique for its potential to detect and identify orthopedic infections. Sonication fluid (SF) was collected by sonicating retrieved implants(2) from 62 patients. All samples were subjected to bacterial culture for clinical diagnostics. In addition, a commercially available FISH kit (miacom diagnostics, Germany), specifically designed for blood analysis (hemoFISH Masterpanel), was used. The kit contained 16S rRNA probes (positive control), non-sense probes (negative control), probes for Staphylococcus spp., Staphylococcus aureus, Streptococcus spp., Streptococcus pneumoniae, Streptococcus agalactiae, Enterococcus faecium, Enterococcus faecalis, Enterobacteriaceae,
Background. Septic knee arthritis is one of the most serious complications after total knee arthroplasty (TKA), and the effectiveness of its treatment affects the patient's quality of life. In our super-aging society, the frequency of TKA in the elderly, often combined with various comorbidities, is increasing. Careful management should be considerd during the management of septic arthritis after TKA in these patients. Purpose. To analyze the clinical features and outcomes of septic arthritis after TKA in our institution. Materials and Methods. Between April 1999 and March 2014, 534 TKAs (osteoarthritis [OA]; 381, rheumatoid arthritis [RA]; 154) were performed. Of these patients, 8 with post-operative infected TKA were retrospectively surveyed. Results. The TKA-associated infection rates were 0.83% (0.35%, OA; 1.7%, RA) during the study period. Five male and 3 female patients were included, with a mean age of 68 years (range, 39–88 years) and primary diagnoses of OA (5) and RA (3). Malignant rheumatoid arthritis (MRA) was present in 1 patient. The infection was affected by a comorbidity in 2 (diabetes mellitus and mixed connective tissue disease). Microorganisms were detectable in 7 patients (methicillin-resistant Staphylococcus aureus [MRSA], 1; methicillin-sensitive Staphylococcus aureus, 2; Streptococcus pyogens, 1; Streptococcus oralis, 1;