There is increasing evidence that non-steroidal anti-inflammatory drugs (NSAIDs) can adversely affect bone repair. We have, therefore, studied the in vitro effects of NSAIDs, which differentially inhibit cyclooxygenases (COX), the prostaglandin/thromboxane synthesising
Hemorrhagic shock and fractures are the most common injuries within multiple injured patients, inducing systemic and local inflammation in NF-kappaB-dependent manner. Alcohol intoxication, showing a high incidence with severe injuries, has immunomodulatory properties and implicates NF-kappaB downregulation. However, the mechanism is largely unknown. A20 deubiquitinase is a critical negative regulator of NF-kappaB activity and inflammation. Here, we investigate the role of A20 as a modifier of NF-kappaB-driven inflammation and remote lung injury in severely injured and alcohol-intoxicated mice. Mice were randomly divided into four groups. Either sodium chloride or ethanol (35%, EtOH) was administrated by intragastral gavage one hour before trauma induction. In the trauma group, the animals underwent an osteotomy with external fracture fixation (Fx) followed by a pressure-controlled hemorrhagic shock (35±5 mmHg; 90 minutes) with subsequent resuscitation (H/R). Sham-operated animals underwent only surgical procedures. Mice were sacrificed at 24 hours. Fatty vacuoles and thus, the alcohol intoxication were evaluated by Oil red O staining of the liver. To assess the lung injury, hematoxylin eosin staining, determination of total protein concentration in bronchoalveolar lavage (BALF) and calculation of the lung injury score (LIS) were performed. Lungs were stained for neutrophil elastase, CXCL1 and active caspase-3 to determine neutrophil invasion, pro-inflammatory changes and apoptosis, respectively. The expression level of A20 was evaluated by immunofluorescence microscopy.Introduction and Objective
Materials and Methods
Matrix metalloproteinase
Osteoporosis is a common problem in postmenopausal women and the elderly. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional
Miniscrew implants (MSIs) are widely used to provide absolute anchorage for the orthodontic treatment. However, the application of MSIs is limited by the relatively high failure rate (22.86%). In this study, we wished to investigate the effects of amorphous and crystalline biomimetic calcium phosphate coating on the surfaces of MSIs with or without the incorporated BSA for the osteointegration process with an aim to facilitate the early loading of MSIs. Amorphous and crystalline coatings were prepared on titanium mini-pin implants. Characterizations of coatings were examined by Scanning electron microscopy (SEM), Confocal laser-scanning dual-channel-fluorescence microscopy (CLSM) and Fourier-transform infrared spectroscopy (FTIR). The loading and release kinetics of bovine serum albumin (BSA) were evaluated by
Intervertebral disc (IVD) degeneration (IDD) involves imbalance between the anabolic and the catabolic processes that regulate the extracellular matrix of its tissues. These processes are complex, and improved integration of knowledge is needed. Accordingly, we present a nucleus pulposus cell (NPC) regulatory network model (RNM) that integrates critical biochemical interactions in IVD regulation and can replicate experimental results. The RNM was built from a curated corpus of 130 specialized journal articles. Proteins were represented as nodes that interact through activation and inhibition edges. Semi-quantitative steady states (SS) of node activations were calculated. Then, a full factorial sensitivity analysis (SA) identified which out of the RNM 15 cytokines, and 4 growth factors affected most the structural proteins and degrading
Nitric oxide is a free radical which in vivo is solely produced during the conversion of the amino acid arginine into citrulline by nitric oxide synthase
Introduction. Diabetes mellitus type 2 (DMT2) patients often develop Achilles tendon (AS) degeneration. The ZDF rat model is often used to study DMT2. Hence, this study investigated whether tenocytes isolated from diabetic and non diabetic ZDF rats respond differentially to normo- (NG) and hyperglycemic (HG) conditions in the presence of tumor necrosis (TNF)α. Method. AS tenocytes isolated from adult diabetic (fa/fa) or lean (fa/+) Zucker Diabetic Fatty (ZDF) rats were treated with 10 ng/mL TNFα either under NG or HG conditions (1 g/L versus 4.5 g/L glucose). Tendons were characterized histopathologically using Movin score. Tenocyte survival, metabolic activity, gene and/or protein expression of the main tendon extracellular matrix (ECM) component collagen type 1, the myofibroblast marker alpha smooth muscle actin (αSMA, Acta2), complement regulatory factors, the antioxidant defense
This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Our hypothesis was that irisin would improve hNPC metabolism and proliferation. hNPCs were isolated from intervertebral discs and cultured in alginate beads. hNPCs were exposed to phosphate-buffered saline (PBS) or recombinant irisin (r-irisin) at 5, 10 and 25 ng/mL (n=4). Each experiment was performed in triplicate. Cell proliferation was assessed with trypan blue staining-automated cell counting and PicoGreen assay. Glycosaminoglycan (GAG) content was measured using the DMMB assay. Metabolic activity was assessed with the MTT assay and the Griess Reagent System. Gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and −3, aggrecan, interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was measured by RT-PCR. MTT assay and ADAMTS-5, COL2, TIMP-1 and IL-1β gene expression were evaluated following incubation with 5, 10 and 25 ng/mL r-irisin for 24 hours and subsequent culture with 10 ng/ml IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with r-irisin). Irisin increased hNPC proliferation (p<0.001), metabolic activity (p<0.05), GAG content (p<0.01), as well as COL2 (p<0.01), aggrecan (p<0.05), TIMP-1 and −3 (p<0.01) gene expression, while decreasing MMP-13 (p<0.05) and IL-1β (p<0.001) mRNA levels. r-irisin pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p<0.001) and a decrease of IL-1β (p<0.05) levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to r-irisin increased hNPC metabolic activity (p<0.001), COL2 gene expression (p<0.05) and decreased IL-1β (p<0.05) and ADAMTS-5 levels (p<0.01). Irisin stimulates hNPC proliferation, metabolic activity, and anabolism by reducing IL-1β and catabolic
A key cause of low back pain is the degeneration of the intervertebral disc (IVD). Causality between infection of the IVD and its degenerative process gained great interest over the last decade. Granville Smith et al. (2021) identified 36 articles from 34 research studies investigating bacteria in human IVDs. Bacteria was identified in 27 studies, whereas 9 attributed bacterial presence to contamination. Cutibacterium acnes was the most abundant, followed by coagulase-negative staphylococcus. However, whether bacteria identified were present in vivo or represent perioperative contamination remains unclear. This study investigated whether bacteria are present in IVDs and what potential effects they may have on native disc cells. Immunohistochemical staining for Gram positive bacteria was performed on human IVD tissue to identify presence and characterise bacterial species. Nucleus pulposus (NP) cells in monolayer and 3D alginate were stimulated with LPS and Peptidoglycan (0.1-50 µg/ml) for 48hrs. Following stimulation qPCR for factors associated with disc degeneration including matrix genes, matrix degrading
BMP-1 is the major procollagen-C-peptidase activating, besides fibrillar collagen types I-III, several
Deriving autologous mesenchymal stem cells (MSCs) from adipose tissues without using
Introduction:. Exercise has showed to reduce pain and improve function in patients with discogenic low back pain (LBP). Although there is currently no biologic evidence that the intervertebral disc (IVD) can respond to physical exercise in humans, a recent study has shown that chronic running exercise is associated with increased IVD hydration and hypertrophy1. Irisin, a myokine released upon muscle contraction, has demonstrated to yield anabolic effects on different cell types, including chondrocytes2. This study aimed to investigate the effect of irisin on human nucleus pulposus cells (hNPCs). Our hypothesis is that irisin may improve hNPCs metabolism and proliferation. METHODS:. The hNPCs, isolated from discectomy surgical waste material (n = 5), were expanded and encapsulated in alginate beads. The hNPCs were treated with: i) only growth medium (control); ii) medium with recombinant irisin (r-IR) at different concentrations (5, 10 and 25 ng / mL); iii) medium with Interleukin-1β (IL1β); iv) medium with IL1β for 24 h and then with IL1β and r-IR; v) medium with r-IR for 24 h and then with r-IR and IL1 β. We evaluated proliferation (trypan blue and PicoGreen), metabolic activity (MTT), nitrite concentration (Griess), and expression levels of catabolic and anabolic genes via real-time polymerase chain reaction (qPCR). Each analysis was performed in triplicate for each donor and each experiment was performed three times. Data were expressed as mean ± S.D. One-way ANOVA was used for the groups under exam. RESULTS:. Irisin increased hNPCs proliferation (p < 0.001), metabolic activity at 10 ng/mL (p < 0.05), and GAG content at concentration of 10 ng/mL and 25 ng/mL (p < 0.01; p < 0.001, respectively). The production of nitrites, used as an indicator of cellular oxidative stress, was significantly decreased (p < 0.01). Gene expression levels compared to the control group increased for COL2A1 (p < 0.01), ACAN (p < 0.05), TIMP-1 and −3 (p < 0.01), while a decrease in mRNA levels of MMP-13 (p < 0.05) and IL1β (p < 0.001) was noticed. r-IR pretreatment of hNPCs cultured in pro-inflammatory conditions resulted in a rescue of metabolic activity (p < 0.001), as well as a decrease of IL-1β (p < 0.05) levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to r-IR led to an increment of hNPC metabolic activity (p < 0.001), COL2A1 gene expression (p < 0.05) and a reduction of IL-1β (p < 0.05) and ADAMTS-5 gene levels (p < 0.01). CONCLUSIONS:. The present study suggested that irisin may stimulate hNPCs proliferation, metabolic activity, and anabolism by reducing the expression of IL-1β and catabolic
Abstract. Cranial cruciate ligament (CrCL) disease/rupture is a highly prevalent orthopaedic disease in dogs and common cause of pain, lameness, and secondary joint osteoarthritis (OA). Previous experiments investigating the role of glutamate receptors (GluR) in arthritic degeneration and pain revealed that OA biomarkers assessing early bone turnover and inflammation, including osteoprotegerin (OPG) and the receptor activator of nuclear factor kappa-B ligand (RANKL) are more likely to be influenced by glutamate signalling. Moreover, interleukin-6 (IL-6) has a complex and potentially bi directional (beneficial and detrimental) effect, and it is a critical mediator of arthritic pain, OA progression and joint destruction. Objectives. 1) to recruit dogs undergoing CrCL disease/rupture surgery and obtain discarded synovial fluid (SF) and serum/plasma (ethics approval, RCVS:2017/14/Alves); 2) to quantify the biomarkers listed above in the SF and serum/plasma by
Introduction and Objective. The Cartilage Oligomeric Matrix Protein (COMP) is a glycoprotein that is elevated in patients with osteoarthritis. The elevation increases linearly with the radiological grade of osteoarthritis. The objective of this study was to study the levels of COMP in knee osteoarthritis in the Indian population and to correlate (establish ranges) with the specific radiological grade of osteoarthritis (Kellgreen and Lawrence grading). Since the radiological classification is subjective, the COMP levels would serve as a more objective way of classifying osteoarthritic joints. Materials and Methods. We analysed the COMP levels by the
Introduction and Objective. Osteoarthristis (OA) has been associated with many genes and yet the genetic basis for this disease has never formally been established. Recent realization that epigenetic changes could be the underlying pathological mechanisms has helped to explain many complex multifactorial diseases with no clear genetic cause. We therefore asked whether epigenetics could also play a role in OA. We have previously shown that the DNA epigenetic modification, specifically the hydroxymethylation on cytosine (5hmC), undergoes a fivefold increase on OA-associated genes which are activated at OA onset. In this study, we further uncovered a set of 5hmC-mediated gene targets and their mechanistic link to OA progression. Materials and Methods. We surgically induced OA on 4 to 6 months old Tet1−/− mice (Tet1tm1.1Jae, the Jackson laboratory) and wild-type littermates by performing destabilization of the medial meniscus (DMM) surgery. Joints were collected for histological assessment through blinded grading with the OARSI scoring system. Human articular chondrocytes were harvested from OA cartilage samples obtained during total knee arthroplasty or from grossly normal cartilage pieces obtained during notchplasty or debridement from patients undergoing anterior cruciate ligament (ACL) reconstruction with no history of OA symptoms, under approved Human subjects Institutional Review Board protocols. Bioinformatic analyses of RNA-sequencing and CCGG sequencing (reduced representation 5hmC profiling) were performed to identify TET1 target genes associated with OA progression. Several measurements were used to assess the effect of TET1 ablation on the phenotype of mouse cartilage tissue and human chondrocytes including, histological evaluation, and quantitative bone assessment by micro-CT imaging and multiplex cytokine analyses in the serum of mice in vivo (mouse 39-plex assay) and in the supernatant of human chondrocyte cultures (human 62-plex assay). Results. We used a mouse model with surgically induced OA and found that OA onset was accompanied by a gain of ∼40,000 differentially hydroxymethylated sites prior the notable histological onset of the disease. We additionally revealed that these changes are mediated by the ten-eleven-translocation
Osteoarthritis is the most common chronic condition of the joints. It is characterized by the degeneration of articular cartilage, formation of osteophytes and alterations in the synovium. This process has a severe impact on the quality of life of the patients and the currently available treatments are unsatisfactory and often merely focused on pain relief. In our group we are working on the development of in situ cross-linkable hydrogel platforms that could be used for resurfacing the damaged articular cartilage using a minimally invasive arthroscopic procedure. Stable fixation of the gel at the joint surface, facilitating the ingrowth of local stem and progenitor cell populations and supporting intrinsic repair mechanisms are considered minimal design parameters. To achieve this, we are exploring the use of enzymatically cross-linkable natural polymer-tyramine conjugates. Dextran-tyramine conjugates were prepared by activation of dextran-OH and subsequent reaction with tyramine. Hyaluronic acid-tyramine and protein-tyramine conjugates were prepared using DMTMM coupling. In situ crosslinking is achieved by mixing the polymer conjugates with the
Osteoarthritis (OA), the most common chronic degenerative joint disease, is characterized by inflammation, degradation of the articular cartilage and subchondral bone lesions, causing pain and decreased functionality. NF-κB pathway is involved in OA and, in most cases, its activation depends on the phosphorylation and degradation of IκBα, the NF-κB endogenous inhibitor that sequesters NF-κB in the cytosol. Under inflammatory stimuli, IκBα is degraded by the IKK signalosome and NF-κB moves into the nucleus, inducing the transcription of inflammatory mediator genes and catabolic
Calcium is an important element for a wide range of physiological functions including muscle contraction, neuronal activity, exocytosis, blood coagulation and cell communication. In the musculoskeletal system calcium is crucial for the structural integrity of bones, teeth, intervertebral disc and articular cartilage. At the cellular level calcium acts as a second messenger. Calcium signalling uses intracellular calcium ions to drive intracellular communication and signal transduction processes. When calcium enters the cell it exerts allosteric regulatory effects on many
Mechanical loading regulates the metabolism of chondrocytes in cartilage1. Nowadays, studies exploring the in vitro response of cartilage towards loading often rely on bioreactor experiments applying only compressive loading. This is likely not sufficiently representative for the complex multi-directional loading profile in vivo (i.e. where typical compressive and shear loading are both present). The impact of multi-axial loading is specifically relevant in the context of the onset of osteoarthritis (OA) due to joint destabilization. Here, alterations in the 3D loading profile, and in particular increased shear forces, are suggested to initiate catabolic molecular responses leading to cartilage degeneration3. However, in vitro/ex vivo data confirming this hypothesis are currently lacking. Therefore, we aim to investigate how increased shear loading affects the metabolism and ECM deposition of a healthy chondrogenic cell line and if this response is different in osteoarthritic primary chondrocytes. A murine chondrogenic precursor cell line (ATDC5) and primary human osteoarthritic articular chondrocytes (hOACs) were encapsulated in 2.2% alginate disks and cultured in DMEM medium for three days. Hydrogels seeded with the different cell groups were loaded in the TA ElectroForce BioDynamic Bioreactor and subjected to following loading conditions: (a) 10% compression at 1Hz for 1h, (b) 10% compression and 10° shear loading at 1Hz for 1h. Unloaded constructs were used as control. After loading, hydrogel constructs were stabilized in culture medium for 2 hours, to facilitate adequate gene expression responses, before being dissolved and snap frozen. RNA was isolated and gene expression levels specific for anabolic pathways, characterized by extracellular matrix (ECM) genes (Col2a1, Aggrecan and Perlecan), catabolic processes (MMP-3 and MMP-13) and chondrogenic transcription factor (Sox9) were evaluated using RT-qPCR. The TA ElectroForce BioDynamic Bioreactor was successfully set-up to mimic cartilage loading. In ATDC5 cells, compression elicits an increase in all measured ECM genes (Col2a1, Aggrecan and Perlecan) compared to unloaded controls, suggesting an anabolic response. This upregulation is decreased when adding additional shear strain. In contrast to ATDC5 cells, the anabolic response of proteoglycans Aggrecan and Perlecan to compressive loading was lower in osteoarthritic chondrocytes, and Col2a1 expression appeared decreased. Adding shear strain reversed this effect on Col2a1 expression. Multi-directional loading increased transcription factor Sox9 expression compared to compression in both ATDC5 and OA chondrocytes. In OA chondrocytes, both loading regimens increased MMP-3 and MMP-13 expression. Shear loading reduces the anabolic effect of compressive loading in both cell types. OA cells presented more catabolic response to mechanical loading compared to precursors, given the increase in catabolic