Advertisement for orthosearch.org.uk
Results 1 - 9 of 9
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 33 - 33
4 Apr 2023
Pareatumbee P Yew A Koh J Zainul-Abidin S Howe T Tan M
Full Access

To quantify bone-nail fit in response to varying nail placements by entry point translation in straight antegrade humeral nailing using three-dimensional (3D) computational analysis. CT scans of ten cadaveric humeri were processed in 3D Slicer to obtain 3D models of the cortical and cancellous bone. The bone was divided into individual slices each consisting of 2% humeral length (L) with the centroid of each slice determined. To represent straight antegrade humeral nail, a rod consisting of two cylinders with diameters of 9.5mm and 8.5mm and length of 0.22L mm and 0.44L mm respectively joined at one end was modelled. The humeral head apex (surgical entry point) was translated by 1mm in both anterior-posterior and medio-lateral directions to generate eight entry points. Total nail protrusion surface area, maximum nail protrusion distance into cortical shell and top, middle, bottom deviation between nail and intramedullary cavity centre were investigated. Statistical analysis between the apex and translated entry points was conducted using paired t-test. A posterior-lateral translation was considered as the optimal entry point with minimum protrusion in comparison to the anterior-medial translation experiencing twice the level of protrusion. Statistically significant differences in cortical protrusion were found in anterior-medial and posterior-lateral directions producing increased and decreased level of protrusion respectively compared to the apex. The bottom anterior-posterior deviation distance appeared to be a key predictor of cortical breach with the distal nail being more susceptible. Furthermore, nails with anterior translation generated higher anterior-posterior deviation (>4mm) compared to posterior translation (<3mm). Aside from slight posterolateral translation of the entry point from the apex, inclusion of a distal posterior-lateral bend into current straight nail design could improve nail fitting within the curved humeral bone, potentially improving distal working length within the flat and narrow medullary canal of the distal humeral shaft


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 25 - 25
17 Apr 2023
Kwak D Bae T Kim I
Full Access

The objective of this study was to analyze the biomechanical effect of an implanted ACL graft by determining the tunnel position according to the aspect ratio (ASR) of the distal femur during flexion-extension motion. To analyze biomechanical characteristics according to the ASR of the knee joint, only male samples were selected to exclude the effects of gender and 89 samples were selected for measurement. The mean age was 50.73 years, and the mean height was 165.22 cm. We analyzed tunnel length, graft bending angle, and stress of the graft according to tunnel entry position and aspect ratio (ratio of antero-posterior depth to medio-lateral width) of the articular surface for the distal femur during single-bundle outside-in anterior cruciate ligament reconstruction surgery. We performed multi-flexible-body dynamic analyses with wherein four ASR (98, 105, 111, and 117%) knee models. The various ASRs were associated with approximately 1-mm changes in tunnel length. The graft bending angle increased when the entry point was far from the lateral epicondyle and was larger when the ASR was smaller. The graft was at maximum stress, 117% ASR, when the tunnel entry point was near the lateral epicondyle. The maximum stress value at a 5-mm distance from the lateral epicondyle was 3.5 times higher than the 15-mm entry position and, the cases set to 111% and 105% ASR, showed 1.9 times higher stress values when at a 5-mm distance compared with a 15-mm distance. In the case set at 98% ASR, the low-stress value showed a without-distance difference from the lateral epicondyle. Our results suggest that there is no relationship between the ASR and femoral tunnel length, A smaller ASR causes a higher graft bending angle, and a larger ASR causes greater stress in the graft


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 74 - 74
1 May 2012
Abbas G Thakar C McMaster J
Full Access

Introduction. The use of the dynamic hip screw is common practice for the fixation of intertrochanteric fractures of the femur. The success of this procedure requires accurate guide wire placement. This can prove difficult at times and can result in repeated attempts leading to longer operating time, multiple tracks and more importantly greater radiation exposure to both patient and operating staff. We hypothesised that rather than using the standard anterior-posterior projected image (Figure 1) of a proximal femur, rotating the intensifier image (Figure 2) so that the guide wire appears to pass vertically makes it easier to visualise the projected direction of the guide wire. Methods. Fifty Specialist Registrars, thirty participating in the London hip meeting 2009, ten from Oxford and ten from Northern deanery orthopaedic rotations were involved in the study. They were presented with standard AP and rotated images of the femoral neck on paper using 135 degree template to replicate the DHS guide. The participants were asked to mark the entry point on the intertrochanteric area of femur on the image where they would have placed the guide wire. They did this on both standard AP and rotated images aiming for the centre of the head of the femur. Fig. 1 Standard AP image Fig. 2 Rotated image. Results. Thirty-seven Specialist Registrars (74%) were able to accurately mark their entry point on rotated images on their first attempt as compared to eighteen trainees (36%) managing to place it correctly first time on the standard image. Thirteen trainees (26%) were able to mark their entry point correctly on both standard AP and rotated images with equal accuracy. Conclusion. Coren et al. 1 argue that human vision can more easily judge horizontal and vertical lines rather than oblique lines. Thus, rather than use the standard anterior-posterior projected image of the hip, we should routinely rotate the intensifier image so that the guide wire appears to be passing in a vertical direction. By rotating the image (Figure 2) in this way it becomes significantly easier to visualise the projected direction of the guide wire and in doing so ensure its accurate final placement thereby minimising possible complications


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 89 - 89
1 Dec 2020
Lentine B Tarka M Schottel P Nelms N Russell S Blankstein M
Full Access

Introduction. Femoral periprosthetic fractures above TKA are commonly treated with retrograde intramedullary nailing (IMN). This study determined if TKA design and liner type affect the minimum knee flexion required for retrograde nailing through a TKA. Methods. Twelve cadaveric specimens were prepared for six single radius (SR) TKAs and six asymmetric medial pivot (MP) TKAs. Trials with 9mm polyethylene liners were tested with cruciate retaining (CR), cruciate substituting (CS) and posterior stabilizing (PS) types. The knee was extended to identify the minimum knee flexion required to allow safe passage of the opening reamer while maintaining an optimal fluoroscopic starting point for retrograde nailing. Furthermore, the angle of axis deviation between the reamer and the femoral shaft was calculated from fluoroscopic images. Results. In all specimens, the reamer entry point was posterior to Blumensaat's line. In the SR TKA, the average flexion required was 70, 71 and 82 degrees for CR, CS and PS respectively. The required flexion in PS was significantly greater than the other designs (p=0.03). In the MP TKA, the average flexion required was 74, 84 and 123 degrees for CR, CS and PS respectively. The required flexion was significantly greater in CS and PS designs (p<0.0001). Femoral component size did not affect the minimum flexion required. Furthermore, the entry reamer required 9.2 (SR) and 12.5 (MP) degrees of posterior axis deviation from the femur. Conclusions. Our study illustrates four novel factors to consider when performing retrograde nailing through TKA. First, significant knee flexion is required to obtain an ideal radiographic starting point when retaining the liner. Second, PS implants require more flexion with both TKA designs. Third, femoral component size does not affect the flexion required. Fourth, there is a consistent posterior axis deviation of the entry reamer from the femoral shaft, explaining the commonly created extension deformity


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 69 - 69
1 Jan 2017
Parchi P Andreani L Cutolo F Carbone M Ferrari V Ferrari M Lisanti M
Full Access

Aim of the study was the evaluation of the efficacy of the use of a new wearable AR video see-throught system based on Head Mounted Displays (HMDs) to guide the position of a working cannula into the vertebral body through a transpedicular approach without the use X-Ray images guidance. We describe a head mounted stereoscopic video see-through display that allows the augmentation of video frames acquired by two cameras with the rendering of patient specific 3D models obtained on the basis of pre-operative radiological volumetric images. The system does not employ any external tracker to detect movements of the user or of the patient. User's head movements and the consistent alignment of the virtual patient with the real one, are accomplished through machine vision methods applied on pairs of live images. Our system has been tested on an experimental setup that simulate the reaching of lumbar pedicle as in a vertebral augmentation procedure avoiding the employment of ionizing radiation. Aim of the study is to evaluate the ergonomics and the accurancy of the systems to guide the procedure. We performed 4 test sessions with a total of 32 kirschner wire implanted by a single operator wearing the HMD with the AR guide. The system accurancy was evaluated by a post-operative CT scan. The most ergonomic AR visualization comprise the use of a pair of virtual viewfinders (one at the level of the skin entry point and one at the level of the trocar's bottom) aligned according to the planned direction of the trocar insertion. With such AR guide the surgeon must align the tip of the needle to the center of the first viewfinder placed on the patient's skin. indeed the viewfinder barycenter provides a 2 degrees of freedom (DoFs) positioning guide corresponding to the point of insertion preoperatively planned over the external surface of the model. The second viewfinder is used by the surgeon to rotate and align the trocar according to the planned direction of insertion (2 rotational DOFs). After the first test series a clamping arm has been introduced to maintain the reached trocar's trajectory. The post-operative CT scan was registered to the preoperative one and the trajectories obtained with the AR guide were compared to the planned one. The overal results obtained in the 4 test session show a medium error of 1.18+/−0.16 mm. In the last year there was a growing interest to the use of Augmented Reality systems in which the real scene watched by the surgeon is merged with virtual informations extracted from the patient's medical dataset (medical data, patient anatomy, preoperative plannig). Wearable Augmented Reality (WAR) with the use of HDMs allows the surgeon to have a “natural point of view” of the surgical field and of the patient's anatomy avoiding the problems related to eye-hand coordination. Results of the in vitro tests are encouraging in terms of precision, system usability and ergonomics proving our system to be worthy of more extensive tests


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 221 - 221
1 Jul 2014
Kueny R Fensky F Sellenschloh K Püschel K Rueger J Lehmann W Hansen-Algenstaedt N Morlock M Huber G
Full Access

Summary Statement. From a mechanical point of view, the clinical use of pedicle screws in the atlas is a promising alternative to lateral mass screws due to an increased biomechanical fixation. Introduction. The most established surgical technique for posterior screw fixation in the atlas (C1) is realised by screw placement through the lateral mass [1]. This surgical placement may lead to extended bleeding from the paravertebral venous plexus as well as a violation of the axis (C2) nerve roots [1]. Using pedicle screws is an emerging technique which utilises the canal passing through the posterior arch enabling the use of longer screws with a greater contact area while avoiding the venous plexus and axis nerve roots. The aim of this ex vivo study was to investigate if pedicle screws in C1 bear the potential to replace the more common lateral mass screws. Therefore, the comparative biomechanical fixation strengths in terms of cycles to failure, stiffness, and removal torque were investigated. Methods. Nine C1 cadaveric vertebrae from donors aged 58.0 ± 11.1 years were separated, CT scanned (Mx8000 IDT 16, Philips Healthcare, DA Best, The NL) with a phantom, and stored at −22°C. Each vertebra received one lateral mass screw and one pedicle screw of the same size (diameter: 3.5 mm, length: 26 mm, Synapse System, Synthes GmbH, Oberdorf, CH). The side on which each screw was placed into the vertebra was allocated based on BMD, age, gender, and testing order. Depending on the surgical technique the entry point varied; the pedicle screw entered through the posterior arch, and the lateral mass screw was inserted further inferior through the lateral mass. The screw tips converged to the same height and depth. Specimens were subjected to a sinusoidal, cyclic (0.5 Hz) fatigue loading at the screw head (858 Bionix®, MTS, Eden Prairie, MN). The peak compressive and tensile forces started from ±15 N and increased by 0.05 N every cycle. Testing was stopped at 5 mm displacement. Cycles to failure, displacement, initial and final cyclic stiffness were measured. After fatigue testing a surgeon evaluated each screw by hand for looseness. Final CT scans were taken and then the removal torque was measured. Results. The specimens were of normal bone quality (BMD = 226 ± 69.0 mgHA/cm. 3. ). The pedicle screw technique consistently and significantly out-performed the lateral mass technique in cycles to failure (p=0.001, r. 2. =0.48), initial stiffness (p=0.01, r. 2. =0.29), end stiffness (p=0.005, r. 2. =0.18), and removal torque (∗p=0.05, r. 2. =0.18). After testing only 33% of pedicle screws were loose compared to 100% of lateral mass screws. Discussion. Utilizing the C1 posterior arch, the pedicle screws were able to withstand a 32% higher toggle force than the lateral mass screws while maintaining a higher stiffness throughout and after testing. The advantages likely arise due to an increased depth into the bone and the smaller canal width. Due to the fixation benefits in the atlas, the clinical use of pedicle screws is a promising alternative to lateral mass screws. Funding from the State of Hamburg and the Marie Curie ITN project, SpineFX, is kindly acknowledged. The authors thank Synthes GmbH for providing the screws


The Bone & Joint Journal
Vol. 96-B, Issue 9 | Pages 1274 - 1281
1 Sep 2014
Farhang K Desai R Wilber JH Cooperman DR Liu RW

Malpositioning of the trochanteric entry point during the introduction of an intramedullary nail may cause iatrogenic fracture or malreduction. Although the optimal point of insertion in the coronal plane has been well described, positioning in the sagittal plane is poorly defined.

The paired femora from 374 cadavers were placed both in the anatomical position and in internal rotation to neutralise femoral anteversion. A marker was placed at the apparent apex of the greater trochanter, and the lateral and anterior offsets from the axis of the femoral shaft were measured on anteroposterior and lateral photographs. Greater trochanteric morphology and trochanteric overhang were graded.

The mean anterior offset of the apex of the trochanter relative to the axis of the femoral shaft was 5.1 mm (sd 4.0) and 4.6 mm (sd 4.2) for the anatomical and neutralised positions, respectively. The mean lateral offset of the apex was 7.1 mm (sd 4.6) and 6.4 mm (sd 4.6), respectively.

Placement of the entry position at the apex of the greater trochanter in the anteroposterior view does not reliably centre an intramedullary nail in the sagittal plane. Based on our findings, the site of insertion should be about 5 mm posterior to the apex of the trochanter to allow for its anterior offset.

Cite this article: Bone Joint J 2014;96-B:1274–81.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 5 | Pages 692 - 695
1 May 2006
Karataglis D Kapetanos G Lontos A Christodoulou A Christoforides J Pournaras J

The aim of this biomechanical study was to investigate the role of the dorsal vertebral cortex in transpedicular screw fixation. Moss transpedicular screws were introduced into both pedicles of each vertebra in 25 human cadaver vertebrae. The dorsal vertebral cortex and subcortical bone corresponding to the entrance site of the screw were removed on one side and preserved on the other. Biomechanical testing showed that the mean peak pull-out strength for the inserted screws, following removal of the dorsal cortex, was 956.16 N. If the dorsal cortex was preserved, the mean peak pullout strength was 1295.64 N. The mean increase was 339.48 N (26.13%; p = 0.033). The bone mineral density correlated positively with peak pull-out strength.

Preservation of the dorsal vertebral cortex at the site of insertion of the screw offers a significant increase in peak pull-out strength. This may result from engagement by the final screw threads in the denser bone of the dorsal cortex and the underlying subcortical area. Every effort should be made to preserve the dorsal vertebral cortex during insertion of transpedicular screws.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 3 | Pages 393 - 399
1 Mar 2008
Morley JR Smith RM Pape HC MacDonald DA Trejdosiewitz LK Giannoudis PV

We have undertaken a prospective study in patients with a fracture of the femoral shaft requiring intramedullary nailing to test the hypothesis that the femoral canal could be a potential source of the second hit phenomenon. We determined the local femoral intramedullary and peripheral release of interleukin-6 (IL-6) after fracture and subsequent intramedullary reaming.

In all patients, the fracture caused a significant increase in the local femoral concentrations of IL-6 compared to a femoral control group. The concentration of IL-6 in the local femoral environment was significantly higher than in the patients own matched blood samples from their peripheral circulation. The magnitude of the local femoral release of IL-6 after femoral fracture was independent of the injury severity score and whether the fracture was closed or open.

In patients who underwent intramedullary reaming of the femoral canal a further significant local release of IL-6 was demonstrated, providing evidence that intramedullary reaming can cause a significant local inflammatory reaction.