In 2020 almost 90% of femoral heads for total hip implants in Germany were made of ceramic. Nevertheless, the cellular interactions and abrasion mechanisms in vivo have not been fully understood until now. Metal transfer from the head-neck taper connection, occurring as smear or large-area deposit, negatively influences the surface quality of the articulating bearing. In order to prevent metal transfer, damage patterns of 40 Biolox delta ceramic retrievals with CoC and CoPE bearings were analysed. A classification of damage type and severity for each component (n=40) was done according to an established scoring system. To investigate the physical properties, the surface quality was measured using confocal microscopy, quantitative analysis of phase composition were performed by Raman spectroscopy and qualitative analysis of metal traces was done by scanning electron microscopy (SEM) with
Musculoskeletal disorders is one of most important health problems human population is facing includes. Approximately 310 thousand of hip protheses have been used in 45 years and older patients in total according to the recent studies have been done. [1, 2]. Many factors, including poor osseointegration or relaxation of the implant due to stress, limit the life of the load-bearing implants [3]. To overcome these difficulties and to protect metal implants inside the body, the surfaces of the implants were coated with silver ion doped hydroxyapatite/bioglass. In this study, silver doped hydroxyapatite ceramic powder and 6P57 bioglass were synthesized. Two different coating suspensions, 100% bioglass and 70% Ag-HAp / 30% bioglass, were prepared in methyl alcohol with a solid content of 1% by weight. Two layers were coated on the external fixator nails by using electrospray method with the bioglass and Ag-Hap/Bioglass suspensions respectively. The coated implants were cut with an equal surface area and kept in human blood plasma for different time. The scanning electron microscopy (SEM, Zeiss Supra 50VP and Zeiss Evo 50EP) and stereo microscope (Zeiss Axiocam Stemi 2000-C) were used to characterize microstructure and thickness of coated surface.
Introduction and Objective. Calcium phosphates are among the most commonly used bone graft substitute materials. Compositions containing predominantly monetite (∼84.7%) with smaller additions of beta-tricalcium phosphate (β-TCP; ∼8.3%) and calcium pyrophosphate (Ca-PP; ∼6.8%) have previously been demonstrated to exhibit osteoinductive properties. Such a multi-component calcium phosphate bioceramic was fashioned in the form of hollowed-out, dome-shaped devices (15 mm diameter, 4 mm height), each reinforced with a 3D printed Ti6Al4V ELI frame. With the aim to induce bone formation beyond the skeletal envelope, these devices were investigated in vivo using a sheep (Ovis aries) occipital bone model. Materials and Methods. The bioceramic composition was prepared from a mixture of β-TCP/dicalcium pyrophosphate and monocalcium phosphate monohydrate powders mixed with glycerol. The Ti6Al4V ELI frame was positioned into a dome-shaped mould and bioceramic paste was poured over the frame and allowed to set, in sterile water, prior to removal from the mould. In adult female sheep (n=7), the devices were positioned directly over the bone and stabilised using self-drilling screws. After 52 weeks, the devices were retrieved, resin embedded, and used for X-ray micro-computed tomography (micro-CT), histology, backscattered electron scanning electron microscopy (BSE-SEM),
Total ankle replacement (TAR) has a mean survivorship of 77% at 10 years which is poor compared to other types of joint arthroplasty. Osteolysis and aseptic loosening are commonly cited TAR failure modes, the mechanisms of which are unknown. Retrieval analyses of TAR devices may reveal mechanisms of failure similar or dissimilar to other joint replacements. This study investigated whether TAR explants exhibit similar damage modes to those recognised in other total joint replacements. 22 Ankle Evolution System TARs (Transystème, Nimes, France) were implanted and retrieved by the same surgeon. Mean implantation time was 7.8 yrs (5.3 to 12.1 range). Pain and/or loosening were the indications for revision. Macro photography, an Alicona Infinite microscope and the Hood/Wasielewski scale were used to classify damage modes on the polyethylene insert. Scanning electron microscopy with
Summary. Macroscopic grading, histologic grading, morphometry, mineral analysis, and mechanical testing were performed to better understand the changes that occur in the cartilage, calcified cartilage, and subchondral bone in early osteoarthritis. Introduction. The earliest changes in osteoarthritis (OA) remain poorly understood due to the difficulty in detecting OA before patients feel pain. We have published details of the mature bovine patella model showing the pre-OA state where no gross macroscopic changes are visible yet microstructural changes indicate very early degeneration. In this new study, we proceed to investigate this model further by more comprehensively quantifying the changes in articular cartilage (AC), zone of calcified cartilage (ZCC), and subchondral bone (SB) in pre and early OA. Methods. Patellae from mature cow were studied. Gross examination with India ink was used to classify macroscopic cartilage degeneration. Two groups were selected in this study: one with no visible surface degeneration (pre-OA) and the other with mild to moderate macroscopically visible surface degeneration (early OA). Histologic staining with Safranin O and Fast Green was analysed with two osteoarthritic scoring systems: Mankin and OOCHAS. Differential Interference Contrast (DIC) microscopy was used to quantify morphometric changes. Degree of mineralisation was analysed with
Summary. A promising approach to stimulate in vivo bone formation by using our newly developed magnesium-based bone substitutes, which can be an alternative to treat the patients with bone loss in addition to the anticatabolic drugs and growth factors. Introduction. Bone impairment arising from osteoporosis as well as other pathological diseases is a major health problem. Anti-catabolic drugs such as bisphosphonates and other biological agents such as bone morphogenetic proteins and insulin-like growth factor can theoretically apply to stimulate bone formation. However, the formation of more brittle bone and uncontrolled release rate are still a challenge nowadays. Hence, we propose to stimulate bone formation by using a newly developed magnesium-based bone substitute. Indeed, the presence of magnesium ions can stimulate bone growth and healing by enhancing osteoblastic activity. This study aims to investigate the mechanical, in vitro and in vivo properties of this novel bone substitute. Methods. The bone substitutes were prepared by incorporating 9% TMSPM-treated Mg granules (i.e. 45μm & 150μm) into biodegradable polymer, polycaprolactone (PCL). The TMSPM silane-coupling agent treatment was used to protect the Mg particles from rapid degradation. Compression test was performed to study the mechanical properties of the bone substitute by using the MTS machine. A 7-day stimulated body fluid (SBF) immersion test was conducted to test their bioactivity. The surface composition was checked by
The cytotoxicity induced by cobalt ions (Co2+) and cobalt nanoparticles (Co-NPs) which released following the insertion of a total hip prosthesis, has been reported. However, little is known about the underlying mechanisms. In this study, we investigate the toxic effect of Co2+ and Co-NPs on liver cells, and explain further the potential mechanisms. Co-NPs were characterised for size, shape, elemental analysis, and hydrodynamic diameter, and were assessed by Transmission Electron Microscope, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscopy and Dynamic Light Scattering. BRL-3A cells were used in this study. Cytotoxicity was evaluated by MTT and lactate dehydrogenase release assay. In order to clarify the potential mechanisms, reactive oxygen species, Bax/Bcl-2 mRNA expression, IL-8 mRNA expression and DNA damage were assessed on BRL-3A cells after Co2+ or Co-NPs treatment.Objectives
Methods