Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Bone & Joint Research
Vol. 2, Issue 9 | Pages 179 - 185
1 Sep 2013
Warwick DJ Shaikh A Gadola S Stokes M Worsley P Bain D Tucker AT Gadola SD

Objectives

We aimed to examine the characteristics of deep venous flow in the leg in a cast and the effects of a wearable neuromuscular stimulator (geko; FirstKind Ltd) and also to explore the participants’ tolerance of the stimulator.

Methods

This is an open-label physiological study on ten healthy volunteers. Duplex ultrasonography of the superficial femoral vein measured normal flow and cross-sectional area in the standing and supine positions (with the lower limb initially horizontal and then elevated). Flow measurements were repeated during activation of the geko stimulator placed over the peroneal nerve. The process was repeated after the application of a below-knee cast. Participants evaluated discomfort using a questionnaire (verbal rating score) and a scoring index (visual analogue scale).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 69 - 69
1 Mar 2021
Sahm F Grote VF Detsch R Kreller T Boccaccini A Bader R Jonitz-Heincke A
Full Access

Several electrical fields are known to be present in bone tissue as originally described by Fukada and Yasuda in the year 1957. Intrinsic voltages can derive from bone deformation and reversely lead to mechanical modifications, called the piezoelectric effect. This effect is used in the clinic for the treatment of bone defects by applying electric and magnetic stimulation directly to the bone supplied with an implant such as the electroinductive screw system. Through this system a sinusoidal alternating voltage with a maximum of 700 mV can be applied which leads to an electric field of 5–70 V/m in the surrounding bone. This approach is established for bone healing therapies. Despite the established clinical application of electrical stimulation in bone, the fundamental processes acting during this stimulation are still poorly understood. A better understanding of the influence of electric fields on cells involved in bone formation is important to improve therapy and clinical success. To study the impact of electrical fields on bone cells in vitro, Ti6Al4V electrodes were designed according to the pattern of the ASNIS III s screw for a 6-well system. Osteoblasts were seeded on collagen coated coverslip and placed centred on the bottom of each well. During four weeks the cells were stimulated 3×45 min/d and metabolic and alkaline phosphatase (ALP) activity as well as gene expression of cells were analysed. Furthermore, supernatants were collected and proteins typical for bone remodelling were examined. The electrical stimulation did not exert a significant influence on the metabolic activity and the ALP production in cells over time using these settings. Gene expression of BSP and ALP was upregulated after the first 3 days whereas OPG was increased in the second half after 14 days of electrical stimulation. Moreover, the concentration of the released proteins OPG, IL-6, DKK-1 and OPN increased when cells were cultivated under electrical stimulation. However, no changes could be seen for essential markers, like RANKL, Leptin, BMP-2, IL-1beta and TNF-alpha. Therefore, further studies will be done with osteoblasts and osteoclasts to study bone remodelling processes under the influence of electrical fields more in detail. This study was supported by the German Research Foundation (DFG) JO 1483/1-1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 110 - 110
2 Jan 2024
Barbosa F Silva J Garrudo F Cabral J Morgado J Ferreira F
Full Access

Bone defects can result from different incidents such as acute trauma, infection or tumor resection. While in most instances bone healing can be achieved given the tissue's innate ability of self-repair, for critical-sized defects spontaneous regeneration is less likely to occur, therefore requiring surgical intervention. Current clinical procedures have failed to adequately address this issue. For this reason, bone tissue engineering (BTE) strategies involving the use of synthetic grafts for replacing damaged bone and promoting the tissue's regeneration are being investigated. The electrical stimulation (ES) of bone defects using direct current has yielded very promising results, with neo tissue formation being achieved in the target sites in vivo. Electroactive implantable scaffolds comprised by conductive biomaterials could be used to assist this kind of therapy by either directing the ES specifically to the damaged site or promoting the integration of electrodes within the bone tissue as a coating. In this study, we developed novel conductive heat-treated polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning capable of mimicking key native features of the bone tissue's extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The developed scaffolds were doped with sulfuric acid and mineralized in Simulated Body Fluid to mimic the inorganic phase of bone ECM. As expected, the doped PAN/PEDOT:PSS nanofibers exhibited electroconductive properties and were able to preserve their fibrous structure. The addition of PEDOT:PSS was found to improve the bioactivity of the scaffolds, with a more significant in vitro mineralization being obtained. By seeding the scaffolds with MG-63 osteoblasts and human mesenchymal stem/stromal cells, an increased cell proliferation was observed for the mineralized PAN/PEDOT:PSS nanofibers, which also registered an increased expression of key osteogenic markers (e.g Osteopontin). Our findings appear to corroborate the promising potential of the generated nanofibers for future ES-based BTE applications. Acknowledgements: The authors thank FCT for funding through the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), BioMaterARISES (EXPL/CTM-CTM/0995/2021) and OptiBioScaffold (PTDC/EME-SIS/32554/2017, POCI-01- 0145-FEDER- 32554), the PhD scholarship (2022.10572.BD) and through institutional funding to iBB (UIDB/04565/2020 and UIDP/04565/2020), Associate Laboratory i4HB (LA/P/0140/2020) and IT (UIDB/50008/2020)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 138 - 138
2 Jan 2024
Silva J Garrudo F Meneses J Marcelino P Barbosa F Moura C Alves N Pascoal-Faria P Ferreira F
Full Access

The growing number of non-union fractures in an aging population has increased the clinical demand for tissue-engineered bone. Electrical stimulation (ES) has been described as a promising strategy for bone regeneration treatments in several clinical studies. However the underlying mechanism by which ES augments bone formation is still poorly understood and its use in bone tissue engineering (BTE) strategies is currently underexplored. Additive manufacturing (AM) technologies (Fused Deposition Modeling/3D Printing) have been widely used in BTE due to their ability to fabricate scaffolds with a high control over their structural and mechanical properties in a reproducible and scalable manner. Thus, in this work, we combined AM methods with conductive biomaterials and ES to enhance the osteogenic differentiation of human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) envisaging improved BTE strategies. First, we started by developing AM-based electro-bioreactor devices containing medical-grade electrodes (stainless steel and Ti6Al4V) to apply ES to monolayer 2D cultures and 3D cell-seeded scaffolds. Computer modeling(Finite Element Analysis-FEA) was employed to predict the magnitude/distribution of electrical fields within the ES devices and along the different conductive scaffolds. Prior to scaffold culture, 5 different ES protocols were tested in terms of their ability to promote hBMSCs proliferation and osteogenic differentiation in 2D cultures. The best performance ES protocol was then used in two different AM-based BTE strategies: 1) Two different conductive scaffolds (conductive poly lactic acid (PLA) and titanium) were seeded with hBMSCs and cultured for 21 days under osteogenic medium conditions with and without ES and their biological performance was evaluated in comparison to non-conductive standard PLA scaffolds; 2) Different PEDOT:PSS-based coating solutions were screened to obtain PEDOT:PSS/Gelatin-coated 3D polycaprolactone (PCL) scaffolds with a high(11 S.cm. -1. ) and stable electroconductivity. When cultured under ES, PEDOT:PSS/Gelatin-PCL scaffolds enhanced significantly hBMSCs osteogenic differentiation and mineralization(calcium deposition), highlighting their potential for BTE applications. Acknowledgements: Funding received from FCT through projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), OptiBioScaffold (PTDC/EME-SIS/4446/2020) and BioMaterARISES (EXPL/CTM-CTM/0995/2021), and to the institutions iBB (UIDB/04565/2020), CDRSP (UIDB/04044/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 554 - 557
1 Apr 2006
Takebayashi T Cavanaugh JM Kallakuri S Chen C Yamashita T

To clarify the pathomechanisms of discogenic low back pain, the sympathetic afferent discharge originating from the L5-L6 disc via the L2 root were investigated neurophysiologically in 31 Lewis rats. Sympathetic afferent units were recorded from the L2 root connected to the lumbar sympathetic trunk by rami communicantes. The L5-L6 discs were mechanically probed, stimulated electrically to evoke action potentials and, finally, treated with chemicals to produce an inflammatory reaction. We could not obtain a response from any units in the L5-L6 discs using mechanical stimulation, but with electrical stimulation we identified 42 units consisting mostly of A-delta fibres. In some experiments a response to mechanical probing of the L5-L6 disc was recognised after producing an inflammatory reaction. This study suggests that mechanical stimulation of the lumbar discs may not always produce pain, whereas inflammatory changes may cause the disc to become sensitive to mechanical stimuli, resulting in nociceptive information being transmitted as discogenic low back pain to the spinal cord through the lumbar sympathetic trunk. This may partly explain the variation in human symptoms of degenerate discs


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 21 - 21
1 May 2012
Griffin M Sebastian A Bayat A
Full Access

Delayed facture repair and bony non-unions pose a clinical challenge. Understandably, novel methods to enhance bone healing have been studied by researchers worldwide. Electrical stimulation (ES) has shown to be effective in enhancing bone healing, however the best wave form and mechanism by which it stimulates osteoblasts remains unknown. Interestingly, it is considered that osteoblast activity depends on specific waveforms applied. Therefore, the aim of this study was to evaluate whether particular waveforms have a differential effect on osteoblast activity. An osteoblast cell line was electrically stimulated with either capacitive coupling (CC) or a novel degenerate wave (DW) using a unique in vitro ES system. Following application of both waveforms, the extent of cytotoxicity, proliferation, differentiation and mineralisation of the osteoblasts were assessed using various assays. Differentiation and mineralisation were further analysed using quantitative real-time PCR (qRT PCR) and immunocytochemistry (ICC). DW stimulation significantly enhanced the differentiation of the osteoblasts compared to CC stimulation, with increased protein and gene expression of alkaline phosphatase and type 1 collagen at 28 hours (p < 0.01). DW significantly enhanced the mineralisation of the osteoblasts compared to CC with greater Alizarin Red S staining and gene expression of osteocalcin, osteonectin, osteopontin and bone sialoprotein at 28 hours (p < 0.05). Moreover, immunocytochemical assays showed higher osteocalcin expression after DW stimulation compared to CC at 28 hours. In conclusion. we have shown that ES waveforms enhanced osteoblast activity to different extent but importantly demonstrate for the first time that DW stimulation has a greater effect on differentiation and mineralisation of osteoblasts than CC stimulation. DW stimulation has potential to provide a secure, controlled and effective application for bone healing. These findings have significant implications in the clinical management of fracture repair and bone. non-unions


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_16 | Pages 17 - 17
1 Nov 2018
Iandolo D
Full Access

One of the latest trends in the field of tissue engineering is the development of in vitro 3D systems mimicking the target tissue or organ and thus recapitulating the tridimensional structure and microenvironment experienced by cells in vivo. Interestingly, certain tissues are known to be regulated by endogenous bioelectrical cues, in addition to chemical and mechanical cues. One such tissue is the bone. It has, indeed, been demonstrated to exhibit piezoelectric properties in vivo, with electrical signaling playing a role in its formation during the early embryo developmental stages. Electrical stimulation has been proven to sustain cell proliferation and to boost the expression of relevant genes and induce higher levels of enzymatic activities related to bone matrix deposition. Herein, we describe the development of a 3D model of bone tissue based on the conductive polymer PEDOT:PSS and human adipose derived stem cells. 3D electroactive porous scaffolds have been produced using the ice-templating technique, and different compositions (different ratios of conductive polymer to Collagen Type 1) have been explored. The developed scaffolds as well as cells interaction and response have been characterized. Overall, the results obtained so far highlight the usefulness of the porous conductive scaffolds as an in vitro platform for the development of 3D models for bone tissue engineering


The Journal of Bone & Joint Surgery British Volume
Vol. 81-B, Issue 5 | Pages 902 - 906
1 Sep 1999
Ochi M Iwasa J Uchio Y Adachi N Sumen Y

We examined whether somatosensory evoked potentials (SEPs) were detectable after direct electrical stimulation of injured, reconstructed and normal anterior cruciate ligaments (ACL) during arthroscopy under general anaesthesia. We investigated the position sense of the knee before and after reconstruction and the correlation between the SEP and instability. We found detectable SEPs in all ligaments which had been reconstructed with autogenous semitendinosus and gracilis tendons over the past 18 months as well as in all cases of the normal group. The SEP was detectable in only 15 out of 32 cases in the injured group, although the voltages in the injured group were significantly lower than those of the controls. This was not the case in the reconstructed group. The postoperative position sense in 17 knees improved significantly, but there was no correlation between it and the voltage. The voltage of stable knees was significantly higher than that of the unstable joints. Our findings showed that sensory reinnervation occurred in the reconstructed human ACL and was closely related to the function of the knee


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 6 | Pages 894 - 899
1 Jun 2010
Khattak MJ Ahmad T Rehman R Umer M Hasan SH Ahmed M

The nervous system is known to be involved in inflammation and repair. We aimed to determine the effect of physical activity on the healing of a muscle injury and to examine the pattern of innervation. Using a drop-ball technique, a contusion was produced in the gastrocnemius in 20 rats. In ten the limb was immobilised in a plaster cast and the remaining ten had mobilisation on a running wheel. The muscle and the corresponding dorsal-root ganglia were studied by histological and immunohistochemical methods.

In the mobilisation group, there was a significant reduction in lymphocytes (p = 0.016), macrophages (p = 0.008) and myotubules (p = 0.008) between three and 21 days. The formation of myotubules and the density of nerve fibres was significantly higher (both p = 0.016) compared with those in the immobilisation group at three days, while the density of CGRP-positive fibres was significantly lower (p = 0.016) after 21 days.

Mobilisation after contusional injury to the muscle resulted in early and increased formation of myotubules, early nerve regeneration and progressive reduction in inflammation, suggesting that it promoted a better healing response.


The Journal of Bone & Joint Surgery British Volume
Vol. 89-B, Issue 12 | Pages 1666 - 1672
1 Dec 2007
Mizuno S Takebayashi T Kirita T Tanimoto K Tohse N Yamashita T

A rat model of lumbar root constriction with an additional sympathectomy in some animals was used to assess whether the sympathetic nerves influenced radicular pain. Behavioural tests were undertaken before and after the operation.

On the 28th post-operative day, both dorsal root ganglia and the spinal roots of L4 and L5 were removed, frozen and sectioned on a cryostat (8 μm to 10 μm). Immunostaining was then performed with antibodies to tyrosine hydroxylase (TH) according to the Avidin Biotin Complex method. In order to quantify the presence of sympathetic nerve fibres, we counted TH-immunoreactive fibres in the dorsal root ganglia using a light microscope equipped with a micrometer graticule (10 x 10 squares, 500 mm x 500 mm). We counted the squares of the graticule which contained TH-immunoreactive fibres for each of five randomly-selected sections of the dorsal root ganglia.

The root constriction group showed mechanical allodynia and thermal hyperalgesia. In this group, TH-immunoreactive fibres were abundant in the ipsilateral dorsal root ganglia at L5 and L4 compared with the opposite side. In the sympathectomy group, mechanical hypersensitivity was attenuated significantly.

We consider that the sympathetic nervous system plays an important role in the generation of radicular pain.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 3 | Pages 416 - 420
1 Mar 2005
Bobyn JD Hacking SA Krygier JJ Harvey EJ Little DG Tanzer M

The effect of zoledronic acid on bone ingrowth was examined in an animal model in which porous tantalum implants were placed bilaterally within the ulnae of seven dogs. Zoledronic acid in saline was administered via a single post-operative intravenous injection at a dose of 0.1 mg/kg. The ulnae were harvested six weeks after surgery. Undecalcified transverse histological sections of the implant-bone interfaces were imaged with backscattered scanning electron microscopy and the percentage of available pore space that was filled with new bone was calculated. The mean extent of bone ingrowth was 6.6% for the control implants and 12.2% for the zoledronic acid-treated implants, an absolute difference of 5.6% (95% confidence interval, 1.2 to 10.1) and a relative difference of 85% which was statistically significant. Individual islands of new bone formation within the implant pores were similar in number in both groups but were 69% larger in the zoledronic acid-treated group. The bisphosphonate zoledronic acid should be further investigated for use in accelerating or enhancing the biological fixation of implants to bone.