Advertisement for orthosearch.org.uk
Results 1 - 20 of 71
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 52 - 52
1 Jan 2017
Bonnin M Saffarini M Bossard N Victor J
Full Access

Analysis of the morphology of the distal femur, and by extension of the femoral components in total knee arthroplasty (TKA), has largely been related to the aspect ratio, which represents the width of the femur. Little is known about variations in trapezoidicity (i.e. whether the femur is more rectangular or more trapezoidal). This study aimed to quantify additional morphological characteristics of the distal femur and identify anatomical features associated with higher risks of over- or under-sizing of components in TKA. We analysed the shape of 114 arthritic knees at the time of primary TKA using the pre- operative CT scans. The aspect ratio and trapezoidicity ratio were quantified, and the post- operative prosthetic overhang was calculated. We compared the morphological characteristics with those of 12 TKA models. There was significant variation in both the aspect ratio and trapezoidicity ratio between individuals. Femoral trapezoidicity was mostly due to an inward curve of the medial cortex. Overhang was correlated with the aspect ratio (with a greater chance of overhang in narrow femurs), trapezoidicity ratio (with a greater chance in trapezoidal femurs), and the tibio- femoral angle (with a greater chance in valgus knees). This study shows that rectangular/trapezoidal variability of the distal femur cannot be ignored. Most of the femoral components which were tested appeared to be excessively rectangular when compared with the bony contours of the distal femur. These findings suggest that the design of TKA should be more concerned with matching the trapezoidal/ rectangular shape of the native femur


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 60 - 60
11 Apr 2023
Chalak A Kale S Mehra S Gunjotikar A Singh S Sawant R
Full Access

Osteomyelitis is an inflammatory condition accompanied by the destruction of bone and caused by an infecting microorganism. Open contaminated fractures can lead to the development of osteomyelitis of the fractured bone in 3-25% of cases, depending on fracture type, degree of soft-tissue injury, degree of microbial contamination, and whether systemic and/or local antimicrobial therapies have been administered. Untreated, infection will ultimately lead to non-union, chronic osteomyelitis, or amputation. We report a case series of 10 patients that presented with post-operative infected non-union of the distal femur with or without prior surgery. The cases were performed at Padmashree Dr. D. Y. Patil Hospital, Nerul, Navi Mumbai, India. All the patients’ consents were taken for the study which was carried out in accordance with the Helsinki Declaration. The methodology involved patients undergoing a two-stage procedure in case of no prior implant or a three-stage procedure in case of a previous implant. Firstly, debridement and implant removal were done. The second was a definitive procedure in form of knee arthrodesis with ring fixator and finally followed by limb lengthening surgery. Arthrodesis was planned in view of infection, non-union, severe arthritic, subluxated knee, stiff knee, non-salvage knee joint, and financial constraints. After all the patients demonstrated wound healing in 3 months along with good radiographic osteogenesis at the knee arthrodesis site, limb lengthening surgeries by tibial osteotomy were done to overcome the limb length discrepancy. Distraction was started and followed up for 5 months. All 10 patients showed results with sound knee arthrodesis and good osteogenesis at the osteotomy site followed by achieving the limb length just 1-inch short from the normal side to achieve ground clearance while walking. Our case series is unique and distinctive as it shows that when patients with infected nonunion of distal femur come with the stiff and non-salvage knee with severe arthritic changes and financial constraints, we should consider knee arthrodesis with Ilizarov ring fixator followed by limb lengthening surgery


Introduction. The evaluation of treatment modalities for distal femur periprosthetic fractures (DFPF) post-total knee arthroplasty (TKA) has predominantly focused on functional and radiological outcomes in existing literature. This study aimed to comprehensively compare the functional and radiological efficacy of locking plate (LP) and retrograde intramedullary nail (IMN) treatments, while incorporating mortality rates. Method. Twenty patients (15 female, 5 male) with a minimum 24-month follow-up period, experiencing Lewis-Rorabeck type-2 DFPF after TKA were included. These patients underwent either LP (n=10) or IMN (n=10). The average follow-up duration was 48 months (range: 24–192). Treatment outcomes, including functional scores, alignment, union time, complications, and mortality rates, were assessed and compared between LP and IMN groups. Clinical examination findings pre-treatment and at final follow-up, along with two-way plain radiographs, were utilized. Statistical analyses comprised Student's t-test and Kaplan-Meier survival analysis with a 95% confidence interval. Result. At final follow-up, the LP group demonstrated a mean Knee Society score of 67.2 ± 16.1, while the IMN group exhibited a score of 72.8 ± 9.4(P = 0.58). No statistically significant differences were observed in alignment between the groups[aLDFA (anatomical lateral distal femoral angle), P = 0.31; aPDFA (anatomical posterior distal femoral angle), P = 0.73]. The mean time to union was 3.7 ± 0.8 months for LP and 3.9 ± 0.6 months for IMN (P = 0.62). Complications such as infection occurred in 1 LP patient, and non-union was observed in 2 LP patients, while no complications were noted in IMN group(P < 0.01). Mortality rates were notably lower in the IMN group compared to the LP group across various time intervals. Conclusion. Both LP and IMN treatments yielded similar functional scores, alignment, and union time for DFPF post-TKA. However, the lower incidence of complications and mortality rates associated with IMN treatment suggest its superiority in managing DFPF following TKA


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 64 - 64
1 May 2012
Conlisk N Pankaj P Howie CR
Full Access

Study Aim. Femoral components used in total knee arthroplasty (TKA) are primarily designed on the basis of kinematics and ease of fixation. This study considers the stress-strain environment in the distal femur due to different implant internal geometry variations (based on current industry standards) using finite element (FE) analyses. Both two and three dimensional models are considered for a range of physiological loading scenarios – from full extension to deep flexion. Issues associated with micro-motion at the bone-implant interface are also considered. Materials and methods. Two (plane strain) and three dimensional finite element analyses were conducted to examine implant micro-motions and stability. The simple 2D models were used to examine the influence of anterior-posterior (AP) flange angle on implant stability. AP slopes of 3°, 7° and 11° were considered with contact between bone and implant interfaces being modeled using the standard coulomb friction model. The direction and region of loading was based on loading experienced at full extension, 90° flexion and 135° flexion. Three main model variations were created for the 3D analyses, the first model represented an intact distal femur, the second a primary implanted distal femur and the third a distal femur implanted with a posterior stabilising implant. Further each of the above 3D model sets were divided into two group, the first used a frictional interface between the bone and implant to characterise the behavior of uncemented implants post TKA and the second group assumed 100% osseointegration had already taken place and focused on examining the subsequent stress/strain environment in the femur with respect to different femoral component geometries relative the intact distal femur model. Results and Discussion. Analyses indicate a trend relating the slope of the anterior-posterior (AP) flange to implant loosening at high flexion angles for uncemented components. Once cemented, this becomes less important. Results from the 3D analyses show that the posterior stabilising implant causes stress concentrations which can lead to bicondylar fatigue fracture. All femoral components cause stress shielding in cancellous bone particularly when they are fully bonded. Investigations into implant micromotion show that revision implants with box sections provided more resistance to micromotion than the pegged primary implants. However for the gait cycle tested the maximum recorded micromotion of both implants was well within acceptable levels for osseointegration to occur


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 5 | Pages 683 - 690
1 May 2009
Victor J Van Doninck D Labey L Van Glabbeek F Parizel P Bellemans J

The understanding of rotational alignment of the distal femur is essential in total knee replacement to ensure that there is correct placement of the femoral component. Many reference axes have been described, but there is still disagreement about their value and mutual angular relationship. Our aim was to validate a geometrically-defined reference axis against which the surface-derived axes could be compared in the axial plane. A total of 12 cadaver specimens underwent CT after rigid fixation of optical tracking devices to the femur and the tibia. Three-dimensional reconstructions were made to determine the anatomical surface points and geometrical references. The spatial relationships between the femur and tibia in full extension and in 90° of flexion were examined by an optical infrared tracking system. After co-ordinate transformation of the described anatomical points and geometrical references, the projection of the relevant axes in the axial plane of the femur were mathematically achieved. Inter- and intra-observer variability in the three-dimensional CT reconstructions revealed angular errors ranging from 0.16° to 1.15° for all axes except for the trochlear axis which had an interobserver error of 2°. With the knees in full extension, the femoral transverse axis, connecting the centres of the best matching spheres of the femoral condyles, almost coincided with the tibial transverse axis (mean difference −0.8°, . sd. 2.05). At 90° of flexion, this femoral transverse axis was orthogonal to the tibial mechanical axis (mean difference −0.77°, . sd. 4.08). Of all the surface-derived axes, the surgical transepicondylar axis had the closest relationship to the femoral transverse axis after projection on to the axial plane of the femur (mean difference 0.21°, . sd. 1.77). The posterior condylar line was the most consistent axis (range −2.96° to −0.28°, . sd. 0.77) and the trochlear anteroposterior axis the least consistent axis (range −10.62° to +11.67°, . sd. 6.12). The orientation of both the posterior condylar line and the trochlear anteroposterior axis (p = 0.001) showed a trend towards internal rotation with valgus coronal alignment


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 40 - 40
17 Apr 2023
Saiz A Kong S Bautista B Kelley J Haffner M Lee M
Full Access

With an aging population and increase in total knee arthroplasty, periprosthetic distal femur fractures (PDFFs) have increased. The differences between these fractures and native distal femur fractures (NDFF) have not been comprehensively investigated. The purpose of this study was to compare the demographic, fracture, and treatment details of PDFFs compared to NDFFs.

A retrospective study of patients ≥ 18 years old who underwent surgical treatment for either a NDFF or a PDFF from 2010 to 2020 at a level 1 trauma center was performed. Demographics, AO/OTA fracture classification, quality of reduction, fixation constructs, and unplanned revision reoperation were compared between PDFF patients and NDFF patients using t-test and Fisher's exact test. 209 patients were identified with 70 patients having a PDFF and 139 patients having a NDFF. Of note, 48% of NDFF had a concomitant fracture of the ipsilateral knee (14%) or tibial plateau (15%). The most common AO/OTA classification for PDFFs was 33A3.3 (71%). NDFFs had two main AO/OTA classifications of 33C2.2 (28%) or 33A3.2. (25%). When controlling for patient age, bone quality, fracture classification, and fixation, the PDFF group had increased revision reoperation rate compared to NDFF (P < 0.05).

PDFFs tend to occur in elderly patients with low bone quality, have complete metaphyseal comminution, and be isolated; whereas, NDFF tend to occur in younger patients, have less metaphyseal comminution, and be associated with other fractures. When controlling for variables, PDFF are at increased risk of unplanned revision reoperation. Surgeons should be aware of these increased risks in PDFFs and future research should focus on these unique fracture characteristics to improve outcomes.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 118 - 118
14 Nov 2024
Schlauch A Shah I Crawford B Martin A Denisov A Tamer P Farrell B
Full Access

Introduction

Distal femur fractures around a total knee arthroplasty (TKA) are a growing problem for orthopaedic surgeons. The purpose of this study was to identify risks of reoperation for nonunion following open reduction and internal fixation of TKA periprosthetic distal femur fractures (PDFF).

Method

Patients with PDFF (AO 33A-C[VB1, C1, D1], Su types 1-3) managed operatively with open reduction and internal fixation (ORIF) were retrospectively reviewed. Exclusion criteria were acute management with a distal femur replacement, less than 6 months of follow-up, and lack of injury or follow-up radiographs. The primary outcome measure was reoperation to achieve bony union. Comparisons were made between cases that did and did not require a reoperation to achieve union. Univariate analysis was used to identify factors to be analyzed in multivariate analysis to determine independent risk factors for the primary outcome.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 11 - 11
17 Apr 2023
Inacio J Schwarzenberg P Yoon R Kantzos A Malige A Nwachuku C Dailey H
Full Access

The objective of this study was to use patient-specific finite element modeling to measure the 3D interfragmentary strain environment in clinically realistic fractures. The hypothesis was that in the early post-operative period, the tissues in and around the fracture gap can tolerate a state of strain in excess of 10%, the classical limit proposed in the Perren strain theory.

Eight patients (6 males, 2 females; ages 22–95 years) with distal femur fractures (OTA/AO 33-A/B/C) treated in a Level I trauma center were retrospectively identified. All were treated with lateral bridge plating. Preoperative computed tomography scans and post-operative X-rays were used to create the reduced fracture models. Patient-specific materials properties and loading conditions (20%, 60%, and 100% body weight (BW)) were applied following our published method.[1]

Elements with von Mises strains >10% are shown in the 100% BW loading condition. For all three loading scenarios, as the bridge span increased, so did the maximum von Mises strain within the strain visualization region. The average gap closing (Perren) strain (mean ± SD) for all patient-specific models at each body weight (20%, 60%, and 100%) was 8.6% ± 3.9%, 25.8% ± 33.9%, and 39.3% ± 33.9%, while the corresponding max von Mises strains were 42.0% ± 29%, 110.7% ± 32.7%, and 168.4% ± 31.9%. Strains in and around the fracture gap stayed in the 2–10% range only for the lowest load application level (20% BW).

Moderate loading of 60% BW and above caused gap strains that far exceeded the upper limit of the classical strain rule (<10% strain for bone healing). Since all of the included patients achieved successful unions, these findings suggest that healing of distal femur fractures may be robust to localized strains greater than 10%.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 47 - 47
1 Oct 2016
Halai M Jamal B Robinson P Qureshi M Kimpton J Syme B McMillan J Holt G
Full Access

Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes which would aid alignment of the femoral component. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population. Our sample group represents real life patients awaiting total knee arthroplasty (TKA), as opposed non-arthritic or cadaveric knees.

We identified the relationship between these rotational axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers.

Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the TEA and the AP axis was 92.78° with a standard deviation of 2.51° (range 88° – 99°). The mean angle between the AP axis and the PCA was 95.43° with a standard deviation of 2.75° (range 85° – 105°). The mean angle between the TEA and the PCA was 2.78° with a standard deviation of 1.91° (range 0° – 10°).

We conclude that while there is a reproducible relationship between the differing femoral axes, there is a significant range in the relationship between the femoral axes. This range may lead to greater inaccuracy than has previously been appreciated when defining the rotation of the femoral component. There is most variation between the PCA and the AP axis. The TEA's relationship with the PCA and AP appears important in defining rotation. Due to the well accepted difficulty in defining the TEA intra-operatively, there may be a role for patient-specific instrumentation in TKA surgery with pre-operative MRI.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_7 | Pages 10 - 10
1 Apr 2014
Halai M Jamal B Robinson P Qureshi M Kimpton J Syme B McMillan J Holt G
Full Access

Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes. Hopefully this will aid the surgeon to more accurately judge the rotation of the femoral cutting block by using the axes with the least variation. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population awaiting total knee arthroplasty (TKA).

We identified the relationship between these axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers.

Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the TEA and AP axis was 92.78°, standard deviation (SD) 2.51° (range 88°–99°). The mean angle between the AP axis and PCA was 95.43°, SD 2.75° (range 85°–105°). The mean angle between the TEA and PCA was 2.78°, SD 1.91° (range 0°–10°).

We conclude that while there is a reproducible relationship between the differing femoral axes, there is a significant range in the relationship between the femoral axes. This range may lead to greater inaccuracy than has previously been appreciated when defining the rotation of the femoral component. There is most variation between the PCA and the AP axis. Most systems have a cutting block with 3° of external rotation from the PCA and this would be parallel to the TEA in the majority, but not all, cases in this series. This data suggests that if the surgeon is to pick two axes to reference from, one should include the TEA.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 4 | Pages 520 - 526
1 Apr 2008
Yau WP Leung A Liu KG Yan CH Wong LS Chiu KY

We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT.

The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of internal rotation, sd 4) than in the conventional approach (3° of internal rotation, sd 4; p < 0.001). The errors in identifying the anteroposterior axis in the two approaches were 0° (sd 5) and 1.8° (sd 5) of internal rotation, respectively (p < 0.001).


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 117 - 122
1 Jan 1997
van Lenthe GH de Waal Malefijt MC Huiskes R

Inadequate bone stock is often found in revision surgery of femoral components of total knee replacements. Our aim was to test the hypothesis that these remodelling patterns can be explained by stress shielding, and that prosthetic bonding characteristics affect maintenance of bone mass.

We made a three-dimensional finite-element model of an average male femur with a cemented femoral knee component. This model was integrated with iterative remodelling procedures. Two extreme prosthetic bonding conditions were analysed and gradual changes in bone density were calculated.

The long-term bone loss under the femoral knee component resembled clinical findings which confirms the hypothesis that stress shielding can cause distal femoral bone loss. Our study predicts, contrary to clinical findings, that an equilibrium situation is not reached after two years, but that bone resorption may continue. This hidden bone loss may be so drastic that large reconstructions are needed at the time of revision.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 25 - 25
17 Apr 2023
Kwak D Bae T Kim I
Full Access

The objective of this study was to analyze the biomechanical effect of an implanted ACL graft by determining the tunnel position according to the aspect ratio (ASR) of the distal femur during flexion-extension motion. To analyze biomechanical characteristics according to the ASR of the knee joint, only male samples were selected to exclude the effects of gender and 89 samples were selected for measurement. The mean age was 50.73 years, and the mean height was 165.22 cm. We analyzed tunnel length, graft bending angle, and stress of the graft according to tunnel entry position and aspect ratio (ratio of antero-posterior depth to medio-lateral width) of the articular surface for the distal femur during single-bundle outside-in anterior cruciate ligament reconstruction surgery. We performed multi-flexible-body dynamic analyses with wherein four ASR (98, 105, 111, and 117%) knee models. The various ASRs were associated with approximately 1-mm changes in tunnel length. The graft bending angle increased when the entry point was far from the lateral epicondyle and was larger when the ASR was smaller. The graft was at maximum stress, 117% ASR, when the tunnel entry point was near the lateral epicondyle. The maximum stress value at a 5-mm distance from the lateral epicondyle was 3.5 times higher than the 15-mm entry position and, the cases set to 111% and 105% ASR, showed 1.9 times higher stress values when at a 5-mm distance compared with a 15-mm distance. In the case set at 98% ASR, the low-stress value showed a without-distance difference from the lateral epicondyle. Our results suggest that there is no relationship between the ASR and femoral tunnel length, A smaller ASR causes a higher graft bending angle, and a larger ASR causes greater stress in the graft


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 120 - 120
1 Mar 2021
Grammens J Peeters W Van Haver A Verdonk P
Full Access

Trochlear dysplasia is a specific morphotype of the knee, characterized by but not limited to a specific anatomy of the trochlea. The notch, posterior femur and tibial plateau also seem to be involved. In our study we conducted a semi-automated landmark-based 3D analysis on the distal femur, tibial plateau and patella. The knee morphology of a study population (n=20), diagnosed with trochlear dysplasia and a history of recurrent patellar dislocation was compared to a gender- and age-matched control group (n=20). The arthro-CT scan-based 3D-models were isotropically scaled and landmark-based reference planes were created for quantification of the morphometry. Statistical analysis was performed to detect shape differences between the femur, tibia and patella as individual bone models (Mann-Whitney U test) and to detect differences in size agreement between femur and tibia (Pearson's correlation test). The size of the femur did not differ significantly between the two groups, but the maximum size difference (scaling factor) over all cases was 35%. Significant differences were observed in the trochlear dysplasia (TD) versus control group for all conventional parameters. Morphometrical measurements showed also significant differences in the three directions (anteroposterior (AP), mediolateral (ML), proximodistal (PD)) for the distal femur, tibia and patella. Correlation tests between the width of the distal femur and the tibial plateau revealed that TD knees show less agreement between femur and tibia than the control knees; this was observed for the overall width (TD: r=0.172; p=0.494 - control group: r=0.636; p=0.003) and the medial compartment (TD: r=0.164; p=0.516 - control group: r=0.679; p=0.001), but not for the lateral compartment (TD: r=0.512; p=0.029 - control: r=0.683; p=0.001). In both groups the intercondylar eminence width was strongly correlated with the notch width (TD: r=0.791; p=0.001 - control: r=0.643; p=0.002). The morphology of the trochleodysplastic knee differs significantly from the normal knee by means of an increased ratio of AP/ML width for both femur and tibia, a smaller femoral notch and a lack of correspondence in mediolateral width between the femur and tibia. More specifically, the medial femoral condyle shows no correlation with the medial tibial plateau


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 47 - 47
2 Jan 2024
Grammens J Pereira LF Danckaers F Vanlommel J Van Haver A Verdonk P Sijbers J
Full Access

Currently implemented accuracy metrics in open-source libraries for segmentation by supervised machine learning are typically one-dimensional scores [1]. While extremely relevant to evaluate applicability in clinics, anatomical location of segmentation errors is often neglected. This study aims to include the three-dimensional (3D) spatial information in the development of a novel framework for segmentation accuracy evaluation and comparison between different methods. Predicted and ground truth (manually segmented) segmentation masks are meshed into 3D surfaces. A template mesh of the same anatomical structure is then registered to all ground truth 3D surfaces. This ensures all surface points on the ground truth meshes to be in the same anatomically homologous order. Next, point-wise surface deviations between the registered ground truth mesh and the meshed segmentation prediction are calculated and allow for color plotting of point-wise descriptive statistics. Statistical parametric mapping includes point-wise false discovery rate (FDR) adjusted p-values (also referred to as q-values). The framework reads volumetric image data containing the segmentation masks of both ground truth and segmentation prediction. 3D color plots containing descriptive statistics (mean absolute value, maximal value,…) on point-wise segmentation errors are rendered. As an example, we compared segmentation results of nnUNet [2], UNet++ [3] and UNETR [4] by visualizing the mean absolute error (surface deviation from ground truth) as a color plot on the 3D model of bone and cartilage of the mean distal femur. A novel framework to evaluate segmentation accuracy is presented. Output includes anatomical information on the segmentation errors, as well as point-wise comparative statistics on different segmentation algorithms. Clearly, this allows for a better informed decision-making process when selecting the best algorithm for a specific clinical application


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 66 - 66
4 Apr 2023
Li M Chow S Wong R Cheung W
Full Access

Osteoporotic fracture has become a major problem in ageing population and often requires prolonged healing time. Low Intensity Pulsed Ultrasound (LIPUS) can significantly enhance fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). DMP1 in osteocytes is responsible for maintaining LCN and mineralisation. This study aims to investigate osteocyte-specific DMP1's role in enhanced osteoporotic fracture healing in response to mechanical stimulation. Bilateral ovariectomy was performed in 6-month-old female SD rats to induce osteoporosis. Metaphyseal fracture was created at left distal femur using oscillating micro-saw. Rats were randomised to groups: (1) DMP1 KD, (2) DMP1 KD + LIPUS, (3) Control, or (4) Control + LIPUS, where KD stands for knockdown by injection of shRNA into marrow cavity 2 weeks before surgery. Assessments included weekly radiography, microCT and immunohistochemistry on DMP1, E11, FGF23 and sclerostin. DMP1 KD significantly impaired LIPUS-accelerated fracture healing when comparing KD + LIPUS group to Control + LIPUS group. The X-ray relative opacity showed less tissue growth at all timepoints (Week 1, 3 & 6; p=0.000, 0.001 and 0.003 respectively) and the bone volume fraction was decreased after DMP1 KD at Week 3 (p=0.006). DMP1 KD also significantly altered the expression levels of osteocyte-specific DMP1, E11, FGF23 and sclerostin during healing process. The lower relative opacity and bone volume fraction in DMP1 KD groups indicated that knockdown of DMP1 was associated with poorer fracture healing process compared to non-knockdown groups. The similar results between knockdown group with and without LIPUS showed that blockage of DMP1 would negate LIPUS-induced enhancement on fracture healing. Acknowledgment: General Research Fund (Ref: 14113018)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 94 - 94
14 Nov 2024
Koh J Mungalpara N Chang N Devi IMP Hutchinson M Amirouche F
Full Access

Introduction. Understanding knee joint biomechanics is crucial, but studying Anterior cruciate ligament (ACL) biomechanics in human adolescents is challenging due to limited availability cadaveric specimens. This study aims to validate the adolescent porcine stifle joint as a model for ACL studies by examining the ACL's behavior under axial and torsion loads and assessing its deformation rate, stiffness, and load-to-failure. Methods. Human knee load during high-intensity sports can reach 5-6 times body weight. Based on these benchmarks, the study applied a force equivalent to 5-times body weight of juvenile porcine samples (90 pounds), estimating a force of 520N. Experiments involved 30 fresh porcine stifle joints (Yorkshire breed, Avg 90 lbs, 2-4 months old) stored at -22°C, then thawed and prepared. Joints were divided into three groups: control (load-to-failure test), axially loaded, and 30-degree torsion loaded. Using a servo-hydraulic material testing machine, the tibia's longitudinal axis was aligned with the load sensor, and specimens underwent unidirectional tensile loading at 1 mm/sec until rupture. Data on load and displacement were captured at 100 Hz. Results. One-way ANOVA showed statistically significant differences in maximum failure force among loading conditions (p = 0.0039). Post hoc analysis indicated significant differences between the control and 500N (non-twisted) groups (p = 0.014) and between the control and 500N (twisted) groups (p = 0.003). However, no significant difference was found between 500N (non-twisted) and 500N (twisted) groups (p = 0.2645). Two samples broke from the distal femur growth plates, indicating potential growth plate vulnerability in adolescent porcines. Conclusions. The study validates the adolescent porcine stifle joint as a suitable model for ACL biomechanical research, demonstrating that torsional loads are as damaging to the ACL's integrity as equivalent axial loads. It also highlights the potential vulnerability of growth plates in younger populations, reflected in the porcine model


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 7 - 7
14 Nov 2024
Cullen D Thompson P Johnson D Lindner C
Full Access

Introduction. Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs. Method. We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the distal femur and the proximal tibia/fibula with points to capture the knee joint (including implants in the post-operative images). This included point positions used to permit calculation of the anatomical tibiofemoral angle. We defined varus/valgus as negative/positive deviations from zero. Ground truth measurements were obtained from the manually placed points. We used the training dataset to develop a machine-learning-based automatic system to locate the point positions and derive the automatic measurements. Agreement between the automatic and manual measurements for the test dataset was assessed by intra-class correlation coefficient (ICC), mean absolute difference (MAD) and Bland-Altman analysis. Result. Analysing the agreement between the manual and automated measurements, ICC values were excellent pre-/post-operatively (0.96, CI: 0.94-0.96) / (0.95, CI: 0.95-0.96). Pre-/post-operative MAD values were 1.3°±1.4°SD / 0.7°±0.6°SD. The Bland-Altman analysis showed a pre-/post-operative mean difference (bias) of 0.3°±1.9°SD/-0.02°±0.9°SD, with pre-/post-operative 95% limits of agreement of ±3.7°/±1.8°, respectively. Conclusion. The developed machine-learning-based system demonstrates high accuracy and reliability in automatically measuring anatomical varus/valgus alignment in pre-operative and post-operative knee radiographs. It provides a promising approach for automating the measurement of anatomical alignment without the need for long-leg radiographs. Acknowledgements. This research was funded by the Wellcome Trust [223267/Z/21/Z]


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 54 - 54
17 Nov 2023
Bishop M Zaffagnini S Grassi A Fabbro GD Smyrl G Roberts S MacLeod A
Full Access

Abstract. Background. Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered. Patient specific instrumentation is known to reduce procedural complexity, time, and surgeons’ anxiety levels. 1. in proximal tibial osteotomy procedures. This study evaluated a novel patient specific distal femoral osteotomy procedure (Orthoscape, Bath, UK) which aimed to use custom-made implants and instrumentation to provide a precision correction while also simplifying the procedure so that more surgeons would be comfortable offering the procedure. Presenting problem. Three patients (n=3) with early-stage knee arthritis presented with valgus malalignment, the source of which was predominantly located within the distal femur, rather than intraarticular. Using conventional techniques and instrumentation, distal femoral knee osteotomy cases typically require 1.5–2 hours surgery time. The use of bi-planar osteotomy cuts have been shown to improve intraoperative stability as well as bone healing times. 2. This normally also increases surgical complexity; however, multiple cutting slots can be easily incorporated into patient specific instrumentation. Clinical management. All three cases were treated at a high-volume tertiary referral centre (Istituto Ortopedico Rizzoli, Bologna) using medial closing wedge distal femoral knee osteotomies by a team experienced in using patient specific osteotomy systems. 3. Virtual surgical planning was conducted using CT-scans and long-leg weight-bearing x-rays (Orthoscape, Bath, UK). Patient specific surgical guides and custom-made locking plates were design for each case. The guides were designed to allow temporary positioning, drilling and bi-planar saw-cutting. The drills were positioned such that the drills above and below the osteotomy became parallel on closing following osteotomy wedge removal. This gave reassurance of the achieved correction allowed the plate to be located precisely over the drills. All screw lengths were pre-measured. Discussion. The surgical time reduced to approximately 30 minutes by the third procedure. It was evident that surgical time was saved because no intraoperative screw length measurements were required, relatively few x-rays were used to confirm the position of the surgical guide, and the use of custom instrumentation significantly reduced the surgical inventory. The reduced invasiveness and ease of surgery may contribute to faster patient recovery compared to conventional techniques. The final post-operative alignment was within 1° of the planned alignment in all cases. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 30 - 30
17 Nov 2023
Swain L Holt C Williams D
Full Access

Abstract. Objectives. Investigate Magnetic Resonance Imaging (MRI) as an alternative to Computerised Tomography (CT) when calculating kinematics using Biplane Video X-ray (BVX) by quantifying the accuracy of a combined MRI-BVX methodology by comparing with results from a gold-standard bead-based method. Methods. Written informed consent was given by one participant who had four tantalum beads implanted into their distal femur and proximal tibia from a previous study. Three-dimensional (3D) models of the femur and tibia were segmented (Simpleware Scan IP, Synopsis) from an MRI scan (Magnetom 3T Prisma, Siemens). Anatomical Coordinate Systems (ACS) were applied to the bone models using automated algorithms. 1. The beads were segmented from a previous CT and co-registered with the MRI bone models to calculate their positions. BVX (60 FPS, 1.25 ms pulse width) was recorded whilst the participant performed a lunge. The beads were tracked, and the ACS position of the femur and tibia were calculated at each frame (DSX Suite, C-Motion Inc.). The beads were digitally removed from the X-rays (MATLAB, MathWorks) allowing for blinded image-registration of the MRI models to the radiographs. The mean difference and standard deviation (STD) between bead-generated and image-registered bone poses were calculated for all degrees of freedom (DOF) for both bones. Using the principles defined by Grood and Suntay. 2. , 6 DOF kinematics of the tibiofemoral joint were calculated (MATLAB, MathWorks). The mean difference and STD between these two sets of kinematics were calculated. Results. The absolute mean femur and tibia ACS position differences (Table 1) between the bead and image-registered poses were found to be within 0.75mm for XYZ, with all STD within ±0.5mm. Mean rotation differences for both bones were found to be within 0.2º for XYZ (Table 1). The absolute mean tibiofemoral joint translations (Table 1) were found to be within ±0.7mm for all DOF, with the smallest absolute mean in compression-distraction. The absolute mean tibiofemoral rotations were found to be within 0.25º for all DOF (Table 1), with the smallest mean was found in abduction-adduction. The largest mean and STD were found in internal-external rotation due to the angle of the X-rays relative to the joint movement, increasing the difficulty of manual image registration in that plane. Conclusion. The combined MRI-BVX method produced bone pose and tibiofemoral kinematics accuracy similar to previous CT results. 3. This allows for confidence in future results, especially in clinical applications where high accuracy is needed to understand the effects of disease and the efficacy of surgical interventions. Acknowledgements: This research was supported by the Engineering and Physical Sciences Research Council (EPSRC) doctoral training grant (EP/T517951/1). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project