Analysis of the morphology of the
Osteomyelitis is an inflammatory condition accompanied by the destruction of bone and caused by an infecting microorganism. Open contaminated fractures can lead to the development of osteomyelitis of the fractured bone in 3-25% of cases, depending on fracture type, degree of soft-tissue injury, degree of microbial contamination, and whether systemic and/or local antimicrobial therapies have been administered. Untreated, infection will ultimately lead to non-union, chronic osteomyelitis, or amputation. We report a case series of 10 patients that presented with post-operative infected non-union of the
Study Aim. Femoral components used in total knee arthroplasty (TKA) are primarily designed on the basis of kinematics and ease of fixation. This study considers the stress-strain environment in the
The understanding of rotational alignment of the
With an aging population and increase in total knee arthroplasty, periprosthetic distal femur fractures (PDFFs) have increased. The differences between these fractures and native distal femur fractures (NDFF) have not been comprehensively investigated. The purpose of this study was to compare the demographic, fracture, and treatment details of PDFFs compared to NDFFs. A retrospective study of patients ≥ 18 years old who underwent surgical treatment for either a NDFF or a PDFF from 2010 to 2020 at a level 1 trauma center was performed. Demographics, AO/OTA fracture classification, quality of reduction, fixation constructs, and unplanned revision reoperation were compared between PDFF patients and NDFF patients using t-test and Fisher's exact test.
209 patients were identified with 70 patients having a PDFF and 139 patients having a NDFF. Of note, 48% of NDFF had a concomitant fracture of the ipsilateral knee (14%) or tibial plateau (15%). The most common AO/OTA classification for PDFFs was 33A3.3 (71%). NDFFs had two main AO/OTA classifications of 33C2.2 (28%) or 33A3.2. (25%). When controlling for patient age, bone quality, fracture classification, and fixation, the PDFF group had increased revision reoperation rate compared to NDFF (P < 0.05). PDFFs tend to occur in elderly patients with low bone quality, have complete metaphyseal comminution, and be isolated; whereas, NDFF tend to occur in younger patients, have less metaphyseal comminution, and be associated with other fractures. When controlling for variables, PDFF are at increased risk of unplanned revision reoperation. Surgeons should be aware of these increased risks in PDFFs and future research should focus on these unique fracture characteristics to improve outcomes.
Distal femur fractures around a total knee arthroplasty (TKA) are a growing problem for orthopaedic surgeons. The purpose of this study was to identify risks of reoperation for nonunion following open reduction and internal fixation of TKA periprosthetic distal femur fractures (PDFF). Patients with PDFF (AO 33A-C[VB1, C1, D1], Su types 1-3) managed operatively with open reduction and internal fixation (ORIF) were retrospectively reviewed. Exclusion criteria were acute management with a distal femur replacement, less than 6 months of follow-up, and lack of injury or follow-up radiographs. The primary outcome measure was reoperation to achieve bony union. Comparisons were made between cases that did and did not require a reoperation to achieve union. Univariate analysis was used to identify factors to be analyzed in multivariate analysis to determine independent risk factors for the primary outcome.Introduction
Method
The objective of this study was to use patient-specific finite element modeling to measure the 3D interfragmentary strain environment in clinically realistic fractures. The hypothesis was that in the early post-operative period, the tissues in and around the fracture gap can tolerate a state of strain in excess of 10%, the classical limit proposed in the Perren strain theory. Eight patients (6 males, 2 females; ages 22–95 years) with distal femur fractures (OTA/AO 33-A/B/C) treated in a Level I trauma center were retrospectively identified. All were treated with lateral bridge plating. Preoperative computed tomography scans and post-operative X-rays were used to create the reduced fracture models. Patient-specific materials properties and loading conditions (20%, 60%, and 100% body weight (BW)) were applied following our published method.[1] Elements with von Mises strains >10% are shown in the 100% BW loading condition. For all three loading scenarios, as the bridge span increased, so did the maximum von Mises strain within the strain visualization region. The average gap closing (Perren) strain (mean ± SD) for all patient-specific models at each body weight (20%, 60%, and 100%) was 8.6% ± 3.9%, 25.8% ± 33.9%, and 39.3% ± 33.9%, while the corresponding max von Mises strains were 42.0% ± 29%, 110.7% ± 32.7%, and 168.4% ± 31.9%. Strains in and around the fracture gap stayed in the 2–10% range only for the lowest load application level (20% BW). Moderate loading of 60% BW and above caused gap strains that far exceeded the upper limit of the classical strain rule (<10% strain for bone healing). Since all of the included patients achieved successful unions, these findings suggest that healing of distal femur fractures may be robust to localized strains greater than 10%.
Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes which would aid alignment of the femoral component. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population. Our sample group represents real life patients awaiting total knee arthroplasty (TKA), as opposed non-arthritic or cadaveric knees. We identified the relationship between these rotational axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers. Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the TEA and the AP axis was 92.78° with a standard deviation of 2.51° (range 88° – 99°). The mean angle between the AP axis and the PCA was 95.43° with a standard deviation of 2.75° (range 85° – 105°). The mean angle between the TEA and the PCA was 2.78° with a standard deviation of 1.91° (range 0° – 10°). We conclude that while there is a reproducible relationship between the differing femoral axes, there is a significant range in the relationship between the femoral axes. This range may lead to greater inaccuracy than has previously been appreciated when defining the rotation of the femoral component. There is most variation between the PCA and the AP axis. The TEA's relationship with the PCA and AP appears important in defining rotation. Due to the well accepted difficulty in defining the TEA intra-operatively, there may be a role for patient-specific instrumentation in TKA surgery with pre-operative MRI.
Three distal femoral axes have been described to aid in alignment of the femoral component; the Trans Epicondylar Axis (TEA), the Posterior Condylar Axis (PCA) and the Antero Posterior (AP) axis. Our aim was to identify if there was a reproducible relationship between the axes. Hopefully this will aid the surgeon to more accurately judge the rotation of the femoral cutting block by using the axes with the least variation. This is the first study compare all three distal femoral axes with each other using magnetic resonance imaging (MRI) in a Caucasian population awaiting total knee arthroplasty (TKA). We identified the relationship between these axes by performing MRI scans on 89 patients awaiting TKA with patient-specific instrumentation. Measurements were taken by two observers. Patients had a mean age of 62.5 years (range 32–91). 51 patients were female. The mean angle between the TEA and AP axis was 92.78°, standard deviation (SD) 2.51° (range 88°–99°). The mean angle between the AP axis and PCA was 95.43°, SD 2.75° (range 85°–105°). The mean angle between the TEA and PCA was 2.78°, SD 1.91° (range 0°–10°). We conclude that while there is a reproducible relationship between the differing femoral axes, there is a significant range in the relationship between the femoral axes. This range may lead to greater inaccuracy than has previously been appreciated when defining the rotation of the femoral component. There is most variation between the PCA and the AP axis. Most systems have a cutting block with 3° of external rotation from the PCA and this would be parallel to the TEA in the majority, but not all, cases in this series. This data suggests that if the surgeon is to pick two axes to reference from, one should include the TEA.
We have investigated the errors in the identification of the transepicondylar axis and the anteroposterior axis between a minimally-invasive and a conventional approach in four fresh-frozen cadaver knees. The errors in aligning the femoral prosthesis were compared with the reference transepicondylar axis as established by CT. The error in the identification of the transepicondylar axis was significantly higher in the minimal approach (4.5° of internal rotation,
Inadequate bone stock is often found in revision surgery of femoral components of total knee replacements. Our aim was to test the hypothesis that these remodelling patterns can be explained by stress shielding, and that prosthetic bonding characteristics affect maintenance of bone mass. We made a three-dimensional finite-element model of an average male femur with a cemented femoral knee component. This model was integrated with iterative remodelling procedures. Two extreme prosthetic bonding conditions were analysed and gradual changes in bone density were calculated. The long-term bone loss under the femoral knee component resembled clinical findings which confirms the hypothesis that stress shielding can cause distal femoral bone loss. Our study predicts, contrary to clinical findings, that an equilibrium situation is not reached after two years, but that bone resorption may continue. This hidden bone loss may be so drastic that large reconstructions are needed at the time of revision.
The objective of this study was to analyze the biomechanical effect of an implanted ACL graft by determining the tunnel position according to the aspect ratio (ASR) of the
Trochlear dysplasia is a specific morphotype of the knee, characterized by but not limited to a specific anatomy of the trochlea. The notch, posterior femur and tibial plateau also seem to be involved. In our study we conducted a semi-automated landmark-based 3D analysis on the
Currently implemented accuracy metrics in open-source libraries for segmentation by supervised machine learning are typically one-dimensional scores [1]. While extremely relevant to evaluate applicability in clinics, anatomical location of segmentation errors is often neglected. This study aims to include the three-dimensional (3D) spatial information in the development of a novel framework for segmentation accuracy evaluation and comparison between different methods. Predicted and ground truth (manually segmented) segmentation masks are meshed into 3D surfaces. A template mesh of the same anatomical structure is then registered to all ground truth 3D surfaces. This ensures all surface points on the ground truth meshes to be in the same anatomically homologous order. Next, point-wise surface deviations between the registered ground truth mesh and the meshed segmentation prediction are calculated and allow for color plotting of point-wise descriptive statistics. Statistical parametric mapping includes point-wise false discovery rate (FDR) adjusted p-values (also referred to as q-values). The framework reads volumetric image data containing the segmentation masks of both ground truth and segmentation prediction. 3D color plots containing descriptive statistics (mean absolute value, maximal value,…) on point-wise segmentation errors are rendered. As an example, we compared segmentation results of nnUNet [2], UNet++ [3] and UNETR [4] by visualizing the mean absolute error (surface deviation from ground truth) as a color plot on the 3D model of bone and cartilage of the mean
Osteoporotic fracture has become a major problem in ageing population and often requires prolonged healing time. Low Intensity Pulsed Ultrasound (LIPUS) can significantly enhance fracture healing through alteration of osteocyte lacuno-canalicular network (LCN). DMP1 in osteocytes is responsible for maintaining LCN and mineralisation. This study aims to investigate osteocyte-specific DMP1's role in enhanced osteoporotic fracture healing in response to mechanical stimulation. Bilateral ovariectomy was performed in 6-month-old female SD rats to induce osteoporosis. Metaphyseal fracture was created at left
Introduction. Understanding knee joint biomechanics is crucial, but studying Anterior cruciate ligament (ACL) biomechanics in human adolescents is challenging due to limited availability cadaveric specimens. This study aims to validate the adolescent porcine stifle joint as a model for ACL studies by examining the ACL's behavior under axial and torsion loads and assessing its deformation rate, stiffness, and load-to-failure. Methods. Human knee load during high-intensity sports can reach 5-6 times body weight. Based on these benchmarks, the study applied a force equivalent to 5-times body weight of juvenile porcine samples (90 pounds), estimating a force of 520N. Experiments involved 30 fresh porcine stifle joints (Yorkshire breed, Avg 90 lbs, 2-4 months old) stored at -22°C, then thawed and prepared. Joints were divided into three groups: control (load-to-failure test), axially loaded, and 30-degree torsion loaded. Using a servo-hydraulic material testing machine, the tibia's longitudinal axis was aligned with the load sensor, and specimens underwent unidirectional tensile loading at 1 mm/sec until rupture. Data on load and displacement were captured at 100 Hz. Results. One-way ANOVA showed statistically significant differences in maximum failure force among loading conditions (p = 0.0039). Post hoc analysis indicated significant differences between the control and 500N (non-twisted) groups (p = 0.014) and between the control and 500N (twisted) groups (p = 0.003). However, no significant difference was found between 500N (non-twisted) and 500N (twisted) groups (p = 0.2645). Two samples broke from the
Introduction. Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs. Method. We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the
Abstract. Background. Distal femoral osteotomy is an established successful procedure which can delay the progression of arthritis and the need for knee arthroplasty. The surgery, however, is complex and lengthy and consequently it is generally the preserve of highly experienced specialists and thus not widely offered. Patient specific instrumentation is known to reduce procedural complexity, time, and surgeons’ anxiety levels. 1. in proximal tibial osteotomy procedures. This study evaluated a novel patient specific distal femoral osteotomy procedure (Orthoscape, Bath, UK) which aimed to use custom-made implants and instrumentation to provide a precision correction while also simplifying the procedure so that more surgeons would be comfortable offering the procedure. Presenting problem. Three patients (n=3) with early-stage knee arthritis presented with valgus malalignment, the source of which was predominantly located within the
Abstract. Objectives. Investigate Magnetic Resonance Imaging (MRI) as an alternative to Computerised Tomography (CT) when calculating kinematics using Biplane Video X-ray (BVX) by quantifying the accuracy of a combined MRI-BVX methodology by comparing with results from a gold-standard bead-based method. Methods. Written informed consent was given by one participant who had four tantalum beads implanted into their
Menisci are crucial structures for knee homeostasis: they provide increase of congruence between the articular surfaces of the