Advertisement for orthosearch.org.uk
Results 1 - 11 of 11
Results per page:
Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 15 - 15
1 Jul 2014
Binch A Phillips K Chiverton N Cole A Breakwell L Michael A Cross A Le Maitre C
Full Access

Summary. Cytokines produced within the degenerate disc induce expression of neurotrophic factors and pain related peptides which could be important in nerve ingrowth and pain sensitisation leading to low back pain. The intervertebral disc (IVD) is considered the largest aneural and avascular structure within the human body, yet during degeneration vascularisation of the IVD is seen to be accompanied by nociceptive nerves. Low back pain is a highly debilitating condition affecting around 80% of the population, 40% of which are attributed to IVD degeneration. Discogenic pain was largely thought to be a result of irritation and compression of the nerve root, yet recent data suggests that pain may be attributed to the sensitisation of sensory nerves by the synthesis of pain related peptides, calcitonin gene related peptide (CGRP) and substance P. It is known that cytokines and chemokines produced by nucleus pulposus cells elicit various effects including the production of matrix degrading enzymes, and decreased matrix molecules. Here, we investigate the hypothesis that cytokines regulate both neurotrophic factor and pain related peptide synthesis within nucleus pulposus and nerve cells which may elicit algesic effects. Real-Time PCR was performed to investigate gene expression of the neurotrophic factors NGF, BDNF, NT3 and their receptors Trk A, B and C along with Substance P and CGRP on directly extracted RNA from human NP cells and NP cells cultured in alginate for 2 weeks prior to treatment for 48hours with IL-1, IL-6 or TNFα at 0–100ng/mL. Similarly SH-SY5Y neuroblastoma cells were differentiated in retinoic acid for 7 days prior to stimulation with IL-1, IL-6 or TNFα at 0ng/mL and 10ng/mL for 48hours. Immunohistochemistry was used to localise neurotrophic factor receptors Trk A, B and C in both degenerate discs and neuronal cells. NGF expression was present in normal and degenerate disc samples, however only degenerate discs expressed the high affinity receptor TrkA. Similarly Trk B was present in 22% of normal samples increasing to 100% expression within degenerate disc samples. All cytokines increased expression of NGF in NP cells (P≤0.05). TNFα also increased BDNF significantly, whereas no significant affects were seen in NT3 expression in NP cells. Trk B expression was significantly increased by IL-1 and TNFα treatment of NP cells. Conversely Trk C was down regulated by IL-6. Substance P was significantly increased by IL-1 and TNFα treatments whilst IL-6 and TNFα increased CGRP expression in NP cells. In SH-SY5Y cells, IL-1 significantly increased BDNF whilst IL-6 and TNFα failed to induce significant differences in neurotrophic factors. All cytokines increased Trk expression in the nerve cell line; however this failed to reach significance. Immunohistochemistry confirmed the presence of Trk receptors within the neuronal cell line. Here we have demonstrated that a number of cytokines known to be up regulated during disc degeneration and disc prolapse, induce expression of various neurotrophic factors, their receptors and pain related peptides within human NP cells, as well as SH-SY5Y cells. This data suggests that the presence and production of cytokines within the degenerate disc may be responsible for nerve ingrowth and sensitisation of nerves which may result in discogenic pain


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 93 - 93
2 Jan 2024
Bermudez-Lekerika P Tseranidou S Kanelis E Crump K Le Maitre C Wuertz-Kozak K Alexopoulos L Noailly J Gantenbein B
Full Access

Intervertebral disc (IVD) degeneration is a pathological process often associated with chronic back pain and considered a leading cause of disability worldwide. 1. During degeneration, progressive structural and biochemical changes occur, leading to blood vessel and nerve ingrowth and promoting discogenic pain. 2. In the last decades, several cytokines have been applied to IVD cells in vitro to investigate the degenerative cascade. Particularly, IL-10 and IL-4 have been predicted as important anabolic factors in the IVD according to a regulatory network model based in silico approach. 3. Thus, we aim to investigate the potential presence and anabolic effect of IL-10 and IL-4 in human NP cells (in vitro) and explants (ex vivo) under hypoxia (5% O2) after a catabolic induction. Primary human NP cells were expanded, encapsulated in 1.2% alginate beads (4 × 106 cells/ml) and cultured for two weeks in 3D for phenotype recovery while human NP explants were cultured for five days. Afterwards, both alginate and explant cultures were i) cultured for two days and subsequently treated with 10 ng/ml IL-10 or IL-4 (single treatments) or ii) stimulated with 0.1 ng/ml IL-1β for two days and subsequently treated with 10 ng/ml IL-10 or IL-4 (combined treatments). The presence of IL-4 receptor, IL-4 and IL-10 was confirmed in human intact NP tissue (Fig 1). Additionally, IL-4 single and combined treatments induced a significant increase of proinflammatory protein secretion in vitro (Fig. 2A-C) and ex vivo (Fig. 2D and E). In contrast, no significant differences were observed in the secretome between IL-10 single and combined treatments compared to control group. Overall, IL-4 containing treatments promote human NP cell and explant catabolism in contrast to previously reported IL-4 anti-inflammatory performance. 4. Thus, a possible pleiotropic effect of IL-4 could occur depending on the IVD culture and environmental condition. Acknowledgements: This project was supported by the Marie Skłodowska Curie International Training Network “disc4all” under the grant agreement #955735. For any figures and tables, please contact the authors directly


The Journal of Bone & Joint Surgery British Volume
Vol. 79-B, Issue 1 | Pages 154 - 160
1 Jan 1997
Edwards AG McNally DS Mulholland RC Goodship AE

Posterior fixation of intervertebral discs is used to treat, and occasionally diagnose, discogenic pain since it is thought that it will reduce the internal loading of the discs in vitro. We measured the internal loading of ten intervertebral discs using stress profilometry under simulated physiological loads and then after posterior fixation. Partial discectomies were performed to simulate advanced disc degeneration and the sequence repeated. Posterior fixation had very little effect on the magnitude of the loads acting on the disc and none when disc degeneration was simulated. It did, however, reduce bulging of the anterior annulus under combined bending and compression (p < 0.03). Recent experiments in vivo have shown that discogenic pain is associated with abnormal bulging of the annulus which suggests that the clinical benefit of fixation may be due to this


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 2 - 2
1 Jan 2013
Adams M Dolan P
Full Access

Introduction. Risk factors for disc degeneration depend on how the condition is defined, i.e. on the specific disc degeneration “phenotype”. We present evidence that there are two major and largely-distinct types of disc degeneration. Methods. The relevant research literature was reviewed and re-interpreted. Evidence. In the . upper. lumbar and thoracic spine, disc degeneration is closely associated with endplate defects and with inflammatory changes in the vertebral bodies. It has a relatively high heritability (i.e. a strong genetic influence), and its incidence does not increase markedly with age. In the . lower. lumbar spine, disc degeneration is closely associated with radial fissures and nucleus herniation. Here it has a relatively low heritability, and a correspondingly stronger association with mechanical loading, and its incidence increases steadily throughout life. Mechanical experiments on cadaveric spines show that endplate fracture and nucleus herniation can be caused by compressive loading, and by bending combined with compression, respectively. Both lesions cause an immediate decompression of the nucleus, so that it becomes difficult to create subsequently the other lesion in the same disc. This suggests distinct phenotypes. Interpretation. The two types of disc degeneration are not entirely distinct, because disc herniation sometimes occurs at upper lumbar levels. Nevertheless, it may be useful to recognise two phenotypes when it comes to explaining and treating discogenic pain. Some other common disc changes (such as water loss and bulging) are attributable to ageing rather than degeneration, whereas disc narrowing probably represents a final common pathway for both types of disc degeneration. Conflicts of Interest. None. Source of Funding. None. This abstract has not been previously published in whole or in part; nor has it been presented previously at a national meeting


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_17 | Pages 16 - 16
1 Apr 2013
Lama P Stefanakis M Sychev I Summers B Harding I Dolan P Adams M
Full Access

Introduction. Discogenic pain is associated with ingrowth of blood vessels and nerves, but uncertainty over the extent of ingrowth is hindering development of appropriate treatments. We hypothesise that adult human annulus fibrosus is such a dense crosslinked tissue that ingrowth via the annulus is confined to a) peripheral regions, and b) fissures extending into the annulus. Methods. Disc tissue was examined from 61 patients (aged 37–75 yrs) undergoing surgery for disc herniation, degeneration or scoliosis. 5 µm sections were stained with H&E to identify structures and tissue types. 30 µm frozen sections were examined using confocal microscopy, following immunostaining for CD31 (an endothelial cell marker), PGP 9.5 and Substance P (general and nociceptive nerve markers, respectively). Fluorescent tags were attached to the antibodies. ‘Volocity’ software was used to calculate numbers and total cross-sectional area of labelled structures, and to measure their distance from the nearest free surface (disc periphery, or annulus fissure). Results. Maximum penetration of blood vessels and nerves from the peripheral annulus was 4,800 µm and 2,200 µm respectively. Maximum distance of nerves and vessels from the nearest free surface was 236 µm and 888 µm. Substance P (but not PGP 9.5) was co-localised with blood vessels, and both number and area of Substance P-stained structures were inversely correlated with grade of disc degeneration. Interpretation. Thick sections and fluorescent markers can show reliably where labelled structures are not present. Results therefore support our hypothesis: deep penetration of nerves into the human annulus occurs only if fissures are present. No conflicts of interest. No funding obtained. This abstract has not been previously published in whole or in part; nor has it been presented previously at a national meeting


The Journal of Bone & Joint Surgery British Volume
Vol. 80-B, Issue 4 | Pages 737 - 742
1 Jul 1998
Suseki K Takahashi Y Takahashi K Chiba T Yamagata M Moriya H

It has been thought that lumbar intervertebral discs were innervated segmentally. We have previously shown that the L5-L6 intervertebral disc in the rat is innervated bilaterally from the L1 and L2 dorsal root ganglia through the paravertebral sympathetic trunks, but the pathways between the disc and the paravertebral sympathetic trunks were unknown. We have now studied the spines of 17 rats to elucidate the exact pathways. We examined serial sections of the lumbar spine using immunohistochemistry for calcitonin gene-related peptide, a sensory nerve marker. We showed that these nerve fibres from the intervertebral disc ran through the sinuvertebral nerve into the rami communicantes, not into the corresponding segmental spinal nerve. In the rat, sensory information from the lumbar intervertebral discs is conducted through rami communicantes. If this innervation pattern applies to man, simple decompression of the corresponding nerve root will not relieve discogenic pain. Anterior interbody fusion, with the denervation of rami communicantes, may be effective for such low back pain


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVI | Pages 95 - 95
1 Aug 2012
Stefanakis M Sychev I Summers B Dolan P Harding I Adams M
Full Access

Introduction. Severe ‘discogenic’ back pain may be related to the ingrowth of nerves and blood vessels, although this is controversial. We hypothesise that ingrowth is greater in painful discs, and is facilitated in the region of annulus fissures. Methods. We compared tissue removed at surgery from 22 patients with discogenic back pain and/or sciatica, and from 16 young patients with scoliosis who served as controls. Wax-embedded specimens were sectioned at 7μm. Nerves and blood vessels were identified using histological stains, and antibodies to PGP 9.5 and CD31 respectively. Results. Blood vessels were identified in 77% of ‘painful’ discs compared to 44% of scoliotic discs (p=0.013), and they were more common in the anterior anulus compared to the posterior (p=0.026). Maximum penetration of blood vessels from the peripheral anulus was 4.7 mm (in ‘painful’ discs) and 2.0 mm (in control discs), and penetration increased with histological grade of disc degeneration in the ‘painful’ discs (p=0.002). In 16/17 ‘painful’ discs, blood vessels were within 1 mm of an anulus fissure, or the disc periphery. Nerves were found in 36% of ‘painful’ discs (all with blood vessels) and 25% of control discs. Nerve ingrowth was always less than or equal to blood vessel ingrowth, with a maximum observed penetration of 1.5 mm from the annulus periphery. Discussion. In degenerated and painful discs, the ingrowth of nerves appears to follow that of blood vessels, and is facilitated in the region of annulus fissures. No nerves were seen >2mm from the annulus periphery, suggesting that previous reports of nerves in the disc nucleus may refer to vertical growth from a vertebral endplate rather than radial growth through the annulus. Results support the view that discogenic back pain is associated with pain-sensitisation events in the disc periphery. Acknowledgements. Research funded by BackCare. M Stefanakis would like to thank the Greek Institute of Scholarships (I.K.Y) for financial support


Bone & Joint 360
Vol. 5, Issue 2 | Pages 37 - 38
1 Apr 2016
Foy MA


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 4 | Pages 554 - 557
1 Apr 2006
Takebayashi T Cavanaugh JM Kallakuri S Chen C Yamashita T

To clarify the pathomechanisms of discogenic low back pain, the sympathetic afferent discharge originating from the L5-L6 disc via the L2 root were investigated neurophysiologically in 31 Lewis rats. Sympathetic afferent units were recorded from the L2 root connected to the lumbar sympathetic trunk by rami communicantes. The L5-L6 discs were mechanically probed, stimulated electrically to evoke action potentials and, finally, treated with chemicals to produce an inflammatory reaction. We could not obtain a response from any units in the L5-L6 discs using mechanical stimulation, but with electrical stimulation we identified 42 units consisting mostly of A-delta fibres. In some experiments a response to mechanical probing of the L5-L6 disc was recognised after producing an inflammatory reaction. This study suggests that mechanical stimulation of the lumbar discs may not always produce pain, whereas inflammatory changes may cause the disc to become sensitive to mechanical stimuli, resulting in nociceptive information being transmitted as discogenic low back pain to the spinal cord through the lumbar sympathetic trunk. This may partly explain the variation in human symptoms of degenerate discs.


Bone & Joint Research
Vol. 5, Issue 9 | Pages 412 - 418
1 Sep 2016
Ye S Ju B Wang H Lee K

Objectives

Interleukin 18 (IL-18) is a regulatory cytokine that degrades the disc matrix. Bone morphogenetic protein-2 (BMP-2) stimulates synthesis of the disc extracellular matrix. However, the combined effects of BMP-2 and IL-18 on human intervertebral disc degeneration have not previously been reported. The aim of this study was to investigate the effects of the anabolic cytokine BMP-2 and the catabolic cytokine IL-18 on human nucleus pulposus (NP) and annulus fibrosus (AF) cells and, therefore, to identify potential therapeutic and clinical benefits of recombinant human (rh)BMP-2 in intervertebral disc degeneration.

Methods

Levels of IL-18 were measured in the blood of patients with intervertebral disc degenerative disease and in control patients. Human NP and AF cells were cultured in a NP cell medium and treated with IL-18 or IL-18 plus BMP-2. mRNA levels of target genes were measured by real-time polymerase chain reaction, and protein levels of aggrecan, type II collagen, SOX6, and matrix metalloproteinase 13 (MMP13) were assessed by western blot analysis.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 4 | Pages 595 - 601
1 Apr 2010
Kafchitsas K Kokkinakis M Habermann B Rauschmann M

In a study on ten fresh human cadavers we examined the change in the height of the intervertebral disc space, the angle of lordosis and the geometry of the facet joints after insertion of intervertebral total disc replacements. SB III Charité prostheses were inserted at L3-4, L4-5, and L5-S1. The changes studied were measured using computer navigation sofware applied to CT scans before and after instrumentation.

After disc replacement the mean lumbar disc height was doubled (p < 0.001). The mean angle of lordosis and the facet joint space increased by a statistically significant extent (p < 0.005 and p = 0.006, respectively). By contrast, the mean facet joint overlap was significantly reduced (p < 0.001). Our study indicates that the increase in the intervertebral disc height after disc replacement changes the geometry at the facet joints. This may have clinical relevance.