Purpose of the study. In a recent study, O'Leary et al. [2005] reported their observations on the patterns of Charité
The viscoelastic cervical disk prosthesis ESP is an innovative one-piece deformable but cohesive interbody spacer. It is an evolution of the LP ESP lumbar disk implanted since 2006. CP ESP provides 6 full degrees of freedom about the 3 axes including shock absorption. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion (figure 1) It thus differs substantially from current prostheses. This study reports the results of a prospective series of 49 patients who are representative of the current use of the ESP implant since 2012. The surgeries were performed by 3 senior surgeons. There were 34 women and 15 men in this group. The average age was 44±7 (32–59). The implantation was single level in 78 % of cases. 55 CP ESP prostheses were analyzed. Clinical data and X-rays were collected at the preoperative time and at 3, 6, and 12 months post-op. The functional results were measured using Neck and Arm VAS, NDI, SF-36, (physical componentPCS and mental component MCS). The analysis was performed by a single observer who was independent from the selection of patients and from the surgical procedure.Introduction
Material and methods
The ESP prosthesis is a one-piece deformable but cohesive interbody spacer. it provides 6 full degrees of freedom about the 3 axes including shock absorption (fig1). The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion in this “silentblock” implant. It thus differs substantially from current prostheses. Surgeries were performed by 2 senior surgeons in 54 women and 34 men (1level in 72 cases, 2 levels in 3 cases, hybrid construct in 13 cases). Average age was 42 (SD: 7). Average BMI was 24.2kg/m2 (SD: 3,4). Clinical data and X-rays were collected at the preoperative time and at 3, 6, 12, 24, and 60 months post-op. The analysis was performed by a single observer independent from the selection of patients and from the surgical procedure. The radiological analysis at 60 months follow-up could be realized in only 76 cases because the quality of the dynamic Xrays was not sufficient in 12 patients. We measured the ROM and the location of mean center of rotation (MCR) of the implanted and adjacent levels using the Spineview® software. The MCR is considered to reflect the quality of movement of a segment; it is localized thanks its co-ordinates. X is expressed as a percentage of the length of the vertebral end plate, and Y as a percentage of the height of the posterior wall. The usual location of the MCR is in a circle, whose center is placed between 30 and 50% of the superior vertebral endplate of the vertebra below, and whose diameter is 70% of the vertebral endplate size.Introduction
Material and methods
The viscoelastic lumbar disk prosthesis ESP is an innovative one-piece deformable but cohesive interbody spacer; it provides 6 full degrees of freedom about the 3 axes including shock absorption. The prosthesis geometry allows limited rotation and translation with resistance to motion (elastic return property) aimed at avoiding overload of the posterior facets. The rotation center can vary freely during motion. It thus differs substantially from current prostheses. This study reports the results of a prospective series of 120 patients who are representative of the current use of the ESP implant since 2006. The surgeries were performed by 2 senior surgeons. There were 73 women and 47 men in this group. The average age was 42 (27–60). The average body mass index was 24.2 kg/m2 (18–33). The implantation was single level in 89% of cases. 134 ESP prostheses were analyzed. Clinical data and X-rays were collected at the preoperative time and at 3, 6, 12, 24, and 36 months post-op. The functional results were measured using VAS, GHQ 28, ODI, SF-36, (physical component PCS and mental component MCS. The analysis was performed by a single observer who was independent from the selection of patients and from the surgical procedure.Introduction
Material and methods
Background. There have been limited published reports on the clinical results of cervical artificial disc replacement. Goffin et al reported a 90% rate of good to excellent results at 1 to 2 yrs after Bryan disc replacement. Wigfield et al reported a 46% improvement in pain and 31% improvement in disability 2 yrs after Prestige cervical disc replacement. Objectives. The study was designed to determine whether new functional cervical