Treatment of proximal humerus fractures (PHF) is controversial in many respects, including the choice of surgical approach for fixation when using a locking plate. The classic
Aim. Clavicular osteotomy was described as an adjunct to
The standard approach is through the
Revision of the humeral component in shoulder arthroplasty is frequently necessary during revision surgery. Newer devices have been developed that allow for easy extraction or conversion at the time of revision preserving bone stock and simplifying the procedure. However, early generation anatomic and reverse humeral stems were frequently cemented into place. Monoblock or fixed collar stems make accessing the canal from above challenging. The cortex of the Humerus is far thinner than the femur and stress shielding has commonly led to osteopenia. Many stem designs have fins that project into the tuberosities putting them at risk for fracture on extraction. Extraction starts with an extended
Anatomic and accurate placement of components is a primary goal in all arthroplasty procedures. Unique to total shoulder arthroplasty, challenging glenoid exposure and osteoarthritic glenoid deformity offer significant challenges and impediments to this goal. Despite thorough pre-operative planning strategies and contemporary cannulated pin-based shoulder systems, it is often times still difficult to accurately aim the guide pin to the medial border of the scapula when the deformity is substantial or exposure is difficult. Even small errors in guide pin position can result in problems with final component version, inclination and glenoid vault perforation. In addition, a malpositioned glenoid component has been shown to have a negative impact on implant longevity and clinical performance. Image-based patient specific instrumentation has been available in the lower extremity for nearly a decade with reliable results. The application of similar technology in the shoulder has demonstrated reliable positioning of the guide pin to a pre-operative plan with subsequent accurate placement of the glenoid component. This surgical demonstration will feature one of the currently available CT-based patient specific glenoid guides using a standard
Hemi shoulder arthroplasty is a rather successful procedure although revision surgery due to secondary glenoid erosion is reported in more than 25%. The downside of common shoulder arthroplasty is that in a
Aim. Recent studies have indicated that the presence of P. acnes in the skin of the shoulder and around the acromion is higher than other body regions like the knee or the hip. The aim of this study was to estimate the presence of P. acnes in a real set of primary shoulder arthroplasty, after skin preparation with chlorhexidine and administration of empirical antibiotic therapy. Method. A prospective observational study involving 63 patients undergoing primary shoulder arthroplasty was designed. In all patients two skin biopsies with a 3 mm dermal punch and one subcutaneous tissue sample after surgical incision were obtained. Skin biopsies were obtained at the most anterior part of the surgical wound in case of superior approach and at the upper part in the
Introduction. The use of reverse total shoulder arthroplasty (RSA) is becoming increasingly common in the treatment of rotator cuff arthropathy. In recent years indications for use have expanded to include elderly patients in whom either internal fixation is not possible due to fracture configuration, poor bone quality, or presence of a rotator cuff deficiency. There is however relatively little evidence to support its use in these circumstances. Objective. This study aims to assess the viability of RSA as a salvage procedure in the treatment of complex proximal humeral fractures or irreducible dislocations, quantified in terms of functional outcome, complication rates and patient reported satisfaction. Methods. All patients presenting between January 2011 and December 2013 with a complex 3- or 4-part humeral fracture or a delayed presentation with an irreducible non-acute dislocation, treated with salvage RSA were eligible for inclusion. All operations were performed in a single centre by one of two specialist upper limb surgeons. Standard
Background. Total Shoulder Arthroplasty (TSA) has been shown to improve the function and pain of patients with severe degeneration. Recently, TSA has been of interest for younger patients with higher post-operative expectations; however, they are treated using traditional surgical approaches and techniques, which, although amenable to the elderly population, may not achieve acceptable results with this new demographic. Specifically, to achieve sufficient visualization, traditional TSA uses the highly invasive
Purpose. While reverse shoulder arthroplasty (RSA) corrects vertical muscle imbalance, it cannot restore the horizontal imbalance seen in cuff-deficient shoulders with combined loss of active elevation and external rotation (CLEER). We report the medium-term results of the modified latissimus dorsi/teres major tendon transfer (L'Episcopo procedure) associated with RSA, performed via a single
Introduction. The use of reverse total shoulder arthroplasty (RSA) is becoming increasingly common in the treatment of rotator cuff arthropathy. Standard RSA technique involves medialising the centre of rotation (COR) maximising the deltoid lever arm and compensating for rotator cuff deficiency. However reported complications include scapular notching, prosthetic loosening and loss of shoulder contour. As a result the use of Bony Increased Offset Reverse Shoulder Arthroplasty (BIO-RSA) has been gaining in popularity. The BIO-RSA is reported to avoid these complications by lateralising the COR using a modified base plate, longer central post and augmentation with cancellous bone graft harvested from the patients humeral head. Objectives. This study aims to compare the outcome in terms of analgesic effect, function and satisfaction, in patients treated with standard RSA and BIO-RSA. Methods. All cases were performed in a single centre by one of two upper limb consultant orthopaedic surgeons over a consecutive 2-year period. At time of listing for operation, the decision as to whether to undertake a bony-increased offset reverse total shoulder was made. Standard
Introduction:. The subscapularis muscle experiences significant strain as it accommodates common movements of the shoulder. Little is known about what happens with this obligatory strain once the subscapularis insertion is disrupted and repaired in the course of shoulder arthroplasty. Subscapularis failure is a serious known complication after shoulder arthroplasty. It is not known what the effect of increasing the thickness of the shoulder head will have on subscapularis strain. It is our hypothesis that the use of large or expanded humeral heads during shoulder replacement will cause increased tension in the repaired subscapularis. The primary purpose of this study was to identify the optimal manner to perform a passive range of motion (PROM) program without invoking a significant increase in strain in the repaired subscapularis. The secondary purpose was to determine the impact of varying the thickness of the humeral head on subscapularis strain using the same PROM protocol. Methods:. Eight fresh-frozen, forequarter cadaver (four female, four male) specimens were obtained following IRB approval. An extended
Introduction. Persistent problems and relatively high complication rates with reverse total shoulder arthroplasty (RTSA) are reported (1, 2). It is assumed that some of these complications are affected by improper intraoperative soft tissue tension. Achieving proper intraoperative soft tissue tension is an obvious surgical goal. However, intraoperative soft tissue tension measurements and methods for RTSA have not been reported. One way to quantify soft tissue tension is to measure intraoperative joint forces using an instrumented prosthesis. Hence, we have developed an instrumented RTSA to measure shoulder joint forces intraoperatively. The goal of this study was to measure intraoperative shoulder joint forces during RTSA. Materials and Methods. The instrumented shoulder prosthesis measures the contact force vector between the glenosphere and humeral tray. This force sensor is a custom instrumented trial implant that can be used with an existing RTSA system (EQUINOXE, Exactech Inc, Gainesville, FL) just as a standard trial implant is used. Four uniaxial foil strain gauges (QFLG-02-11-3LJB, Tokyo Sokki Kenkyujo Co., Ltd., JP) are instrumented inside the sensor. Using a calibration matrix, the three force components were calculated from four strain gauge outputs (3). Sixteen patients who underwent RTSA took part in this IRB approved study. All patients were greater than 50 years of age and willing to review and sign the study informed consent form. After obtaining informed consent for surgery, a standard
Patients using a neutral rotation brace post proximal humerus fracture fixation have improved functional outcome and external rotation of the shoulder compared to patients using a standard polysling. Patients who have proximal humerus fracture fixation with extramedullary plates and screws have a risk of reduced range of movement especially external rotation. Gerber et al showed that the average external rotation after fixation of proximal humeral fractures was 39 degrees in their patient cohort compared to a normal range of 80–100 degrees. This can lead to reduced function and poor patient related outcomes. Geiger et al showed that in a cohort of 28 patients, poor functional outcome was noted in 39.3% with an average Constant-Murley Score of 57.9. Current practice is to utilise a polysling holding the shoulder in internal rotation post-shoulder fixation. Patients usually wear the sling for up to 6 weeks. We believe that this increases the risk of adhesion formation with the shoulder in internal rotation in the shoulder joint. Therefore this can cause loss of external rotation in the shoulder joint. We believe that holding the shoulder in a neutral alignment, with a neutral rotation brace post-fixation, will enable an increased rate of external rotation post-operatively thus improving external rotation and functional outcome. There is currently no literature comparing the different slings used post-operatively and we believe that this study would be the first of its kind. It would have a substantial change in the way clinicians manage proximal humeral fractures and will potentially reduce the numbers of re-operations to divide adhesions or perform capsular releases. Secondary benefits include a potential earlier return to full function and work and improved patient satisfaction. Study proposal: Prospective Randomised Controlled Trial of the neutral rotation brace compared to the standard, currently used, polysling post proximal humerus fracture fixation. No blinding of either participants or clinicians. Three surgeons utilising similar fixation techniques via the