Advertisement for orthosearch.org.uk
Results 1 - 20 of 68
Results per page:
Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 58 - 58
1 Apr 2019
Dharia M Armacost J Son Y
Full Access

INTRODUCTION. Porous metal bone fillers are frequently used to manage bony defects encountered in revision total knee arthroplasty (rTKA). Compared to structural graft, porous metal bone fillers have shown significantly lower loosening and failure rates potentially due to osseointegration and increased material strength [1]. The strength of porous metal bone fillers used in lower extremities is frequently assessed using compression/shear/torsion test methods, adapted from spine standards. However, these basic methods may lack clinical relevance, and do not provide any insight on the relationship between patient activity and anticipated prosthesis performance. The goal of this study was to evaluate the response of bone fillers under different activities of daily living, in order to define physiologically relevant worst case biomechanics for component evaluation. METHODS. A bone filler tibial augment is shown in Figure 1. A test construct for tibial augments (half-block each for medial and lateral sides) is shown in Figure 2, along with compatible rTKA components. An additional void in the bone was filled using bone cement. Loading was applied through the tibiofemoral contact patches created on polyethylene tibial insert. Loading was used for two activities of daily living; walking and deep knee bend [2–3]. During walking, the tibiofemoral contact patch on the anterior tibial post gets loaded due to femoral hyperextension with 1.2xbody weight (BW), whereas the medial and lateral condyles get loaded with 3xBW compressive load. For deep knee bend, only the condyles get loaded with 4.34xBW. Compared to walking, 45% higher compressive load magnitude in deep knee bend located further posterior was anticipated to create a larger bending moment and induce higher stress on the half augments. A finite element analysis (FEA) was performed by modeling this test construct with a medium size tibial augment. All components were modeled using linear elastic material properties. All interfaces, including the augment-bone interface (representing full bony ingrowth construct) were modeled using bonded contact. The inferior surface of the bone analogue was constrained. Linear static analyses were performed and peak von mises stress predicted in the tibial augments was compared between activities. RESULTS. Deep knee bend resulted in 31% higher stresses in the tibial augments than for walking. High von mises stresses were mostly predicted at the superior/posterior aspect of the internal side of the augment and in the corners of the cutouts. Figure 3 presents the von mises stresses in the tibial augments for both loading scenarios. DISCUSSION. This study revealed that the 45% increased posterior compressive load associated with deep knee bend is a more significant factor than the moment applied to the post during walking gait for a hyperextended knee, when considering the stress in bone filler augments in revision TKA. The stress in the augments can depend on multiple factors and the proposed FEA method can be used to compare stresses in different porous material bone fillers to determine worst case for assessing its strength


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 81 - 81
1 Feb 2017
Grieco T LaCour M Zeller I Sharma A Cates H Hamel W Komistek R
Full Access

Introduction. The Bi-Cruciate Stabilized (BCS) total knee arthroplasty (TKA) incorporates two cam-post mechanisms to reproduce the functionality and stability provided by the anterior cruciate ligament and posterior cruciate ligament in the native knee. The anterior cam-post mechanism provides stability in full extension and early flexion (≤20°) while the posterior cam-post mechanism prevents anterior sliding of the femur during deeper flexion (≥60°). Recently (2012), a second generation BCS design introduced more normal shapes to the femur and tibial bearing geometries that provides delayed lateral femoral condyle rollback and encourages more stable positioning of the medial femoral condyle. The purpose of this study was to compare the in vivo kinematics exhibited by the two generations during weight bearing flexion. Methods. In vivo kinematics were derived for 126 patients. Eighty-six subjects were implanted with a first generation BCS (BCS 1) TKA and 40 with the second generation BCS (BCS 2) TKA. Fluoroscopic videos were captured for patients while they performed a deep knee bend (DKB) from full extension to maximum flexion. Anterior-posterior motion of the lateral femoral condyle (LAP) and the medial femoral condyle (MAP), as well as tibio-femoral axial rotation, were analyzed at 30° increments from full extension to maximum flexion using a 3D-to-2D image registration technique. Statistical analysis was conducted at the 95% confidence level. Results. From full extension to 120° of flexion the amount of posterior femoral rollback (PFR) for the lateral condyle was −25.8±5.87 mm and −14.4±4.75 mm for the BCS1 and BCS2 groups respectively (p=0.003). Over the same range of motion, the anterior-posterior motion of the medial condyle in the BCS1 and BCS2 groups was −15.8±3.03 mm and −8.46±2.35 mm respectively (p=0.001). Significant differences in LAP and/or MAP position existed at each flexion increment from 0–120° of flexion (Figure 1). The BCS1 group exhibited 12.1±6.57° of axial rotation from full extension to 120° of flexion, while the BCS2 rotated 7.36±4.31° (p=0.046). Significant differences in femoral rotation with respect to the tibia existed at full extension and 30°of flexion (Figure 2). Discussion and Conclusion. Compared to BCS2 subjects, those implanted with the BCS1 exhibited greater magnitudes of anterior-posterior motion and more tibio-femoral axial rotation during DKB. The guided motion of the BCS1 encouraged large translations and rotations that may have led to complications such as dislocations and anterolateral knee pain. In comparison, the BCS2 exhibits attenuated and more stable anterior-posterior motions, while still maintaining sufficient magnitudes of rollback and rotation as intended


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 82 - 82
1 Feb 2017
Grieco T Sharma A Hamel W LaCour M Zeller I Cates H Komistek R
Full Access

Background. The Bi-Cruciate Stabilized (BCS) total knee arthroplasty (TKA) incorporates two cam-post mechanisms in order to replicate the functionality and stability provided by the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) in the native knee. Recently (2012), a second generation BCS design has introduced femur and tibial bearing modifications that are intended to delay lateral femoral condyle rollback and encourage more stable positioning of the medial femoral condyle to more closely replicate normal knee kinematics. The purpose of this study was to compare the kinematics of this TKA to the normal knee during a weight bearing flexion activity. Methods. In vivo kinematics were derived for 10 normal non-implanted knees and 40 second generation BCS TKAs all implanted by a single surgeon. Computed tomography (CT) scans were obtained for each normal patient, and 3D reconstruction of the femur, tibia/fibula, and patella was performed. Fluoroscopic images were captured at 60 Hz using a mobile fluoroscopic unit that tracked the knee while patients performed a deep knee bend (DKB) from full extension to maximum flexion. A 3D-to-2D image registration technique was used at 30° increments to determine the transformations of the segmented bones or TKA components. The anterior-posterior motion of the lateral femoral condyle contact point (LAP) and the medial femoral condyle contact point (MAP), as well as tibio-femoral axial rotation, were measured at 30° increments from full extension to maximum flexion. Statistical analysis was conducted at the 95% confidence level. Results. From full extension to 120° of knee flexion the lateral condyle contact point translated posteriorly by 14.55 mm ± 5.11 mm and 10.47 mm ± 3.14 mm in the Normal and BCS groups respectively (p=0.1984). Over the same range of motion, the anterior-posterior motion of the medial condyle contact point in the Normal and BCS groups was −5.05 mm ± 2.91 mm and −10.66 mm ± 4.46 mm respectively (p=0.0433). Significant differences in LAP and/or MAP position existed at each flexion increment from 0–120° of flexion (Figure 1). The Normal group exhibited 19.85° ± 6.92° of axial rotation from full extension to 120° of flexion, while the BCS rotated 7.36° ± 4.31° (p=0.0085). Significant differences in femoral rotation with respect to the tibia existed at full extension as well as at 30° and 60° of knee flexion (Figure 2). Conclusions. Like the normal knee, the BCS experiences larger amounts of posterior motion in the first 30 degrees of knee flexion, compared to its mid-flexion phases (30°–90°). After 90 degrees the posterior motion in the BCS continues to increase, likely in part due to posterior cam-post engagement as intended. In this sample of normal knee subjects, very little posterior motion of either femoral condyle happens between 90 and 120 degrees of knee flexion although significant amounts of rollback are expected thereafter as reported in the literature. The axial rotation experienced by the BCS group is quite less than that experienced by the Normal group, however it is quite comparable to other TKAs, if not greater


Introduction. Many fluoroscopic studies on total knee arthroplasty (TKA) have identified kinematic variabilities compared to the normal knee, with many subjects experiencing paradoxical motion patterns. The intent of this study was to investigate the results of a newly designed PCR TKA to determine kinematic variabilities and assess these kinematic patterns with those previously documented for the normal knee. Methods. The study involves determining the in vivo kinematics for 80 subjects compared to the normal knee. 10 subjects have a normal knee, 40 have a Journey II PCR TKA and 40 subjects with the Journey II XR TKA (BCR). Although all PCR subjects have been evaluated, we are continuing to evaluate subjects with a BCR TKA. All TKAs were performed by a single surgeon and deemed clinically successful. All subjects performed a deep knee bend from full extension to maximum flexion while under fluoroscopic surveillance. Kinematics were calculated via 3D-to-2D registration at 30° increments from full extension to maximum flexion. Anterior/posterior translation of the medial (MAP) and lateral (LAP) femoral condyles and femorotibial axial rotation were compared during ranges of motion in relation to the function of the cruciate ligaments. Results. Of the 40 PCR TKAs, the average overall flexion was 112.6°, while the average for normal subjects was 139.0°. Initial BCR subjects revealed a higher than expected 128.0°. From 0=30° knee flexion, PCR subjects demonstrated −4.74±4.94 mm of posterior LAP movement, −2.04±4.07 mm of MAP movement and 3.61±8.13° of external axial rotation. In the same range of motion, normal subjects exhibited −8.80±3.32 mm of LAP movement, −3.81±1.03 mm of MAP movement and an axial rotation of 11.34±3.78°. From 30=90° knee flexion, PCR subjects demonstrated 4.37±8.26 mm of LAP movement, 0.12±7.95 mm of MAP movement and 0.79±11.43° of axial rotation. In the same range of motion, normal subjects exhibited −4.28±3.13 mm of LAP movement, −1.11±2.76 mm of MAP movement and axial rotation of 6.54±4.33°. From 0°-maximum flexion, PCR subjects demonstrated −2.71±5.37 mm of LAP movement, 1.79±4.88 mm of MAP movement and 5.99±5.26° of axial rotation. In the same range of motion, normal subjects exhibited −17.83±6.04 mm of LAP movement, −9.11±4.93 mm of MAP movement and axial rotation of 23.66±7.81°. Overall, the BCR subject displayed kinematic patterns similar to those of a normal knee; more detailed numbers will be presented in the presentation. Discussion. Subjects having a PCR TKA experienced excellent weight-bearing flexion and kinematic patterns similar to the normal knee, but less in magnitude. These subjects experienced posterior femoral rollback in early and late flexion. During mid-flexion, subjects having a PCR TKA did experience some variable motion patterns, which may be due to the absence of the ACL. Subjects having a BCR TKA experienced more continuous rollback throughout flexion, more similar to the normal knee. Similar to the normal knee, subjects having a PCR TKA did experience progressive axial rotation throughout knee flexion (Figures). Significance. While they still experience normal-like rollback during early (0°–30°) and late flexion (90°-120°), subjects with a PCR TKA consistently demonstrated Anteriorization of the joint in mid-flexion


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 145 - 145
1 Mar 2017
Shalhoub S Fitzwater F Dickinson M Clary C Maletsky L
Full Access

Introduction. Knee joint instability, which is a primary reason for TKA revision surgeries, is typically caused by deficiency in the knee ligaments [1, 2]. Managing ligament deficiency and restoring joint stability continues to be one of the greatest challenges for revision surgeries [3]. To treat such patients, revision TKA implants frequently incorporate a constrained post and cam mechanism to provide enhanced varus-valgus constraint to supplement the function of the collateral ligaments. The aim of this study was to evaluate knee kinematics during a weight bearing deep knee bend for both a primary TKA system and its complimentary revision system. The hypothesis of the study was that the revision tibial insert would demonstrate improved knee stability, in the form of a reduced range of motion under out-of-plane loading, when compared to the primary system. Methods. Eight cadaveric knees (age: 59±10 years, BMI 23.3±3.5) were implanted with an ATTUNE™ revision femoral component and a primary posterior stabilized tibial component. Each knee was mounted and aligned into the Kansas Knee Simulator (Fig. 1) [4]. A deep knee bend was performed between 10° and 110° flexion with no out-of-plane loading. Additional deep knee bends were performed with constant 6Nm external and 6Nm internal torques about the tibial long axis, and with 40N medial and 40N lateral loads applied at the ankle sled. The 40N medial and 40N lateral loads produce approximately 15Nm adduction and abduction moments at the knee, respectively. The primary tibial insets were then replaced with revision tibial inserts from the same TKA system and the deep knee bend cycles were repeated. The revision tibial inserts included a larger tibial post intended to constrain the varus-valgus rotation of the knee. The change in knee kinematics of the revision tibial insert compared to the primary insert was calculated and student t-tests were performed to identify significant differences between the two tibial insert types for each loading condition. Results. The baseline deep knee bend with no out-of-plane loads showed no statistical difference in kinematics between the primary and the revision tibial inserts. The revision tibial insert demonstrated a significant reduction in varus-valgus range-of-motion compared to the primary tibia for the deep knee bends with adduction and abduction moments (Fig. 2). The deviation in the internal-external rotation for internal-external torque cycles were significantly smaller for the revision compare to the primary tibial inserts (Fig. 3). Discussion. The primary and revision implants have the same tibial plateau geometries; therefore, it was expected that they have similar tibiofemoral kinematics for the baseline deep knee bend. The variations in tibiofemoral kinematics in the cycles with out-of-sagittal plane loads between the two inserts were primarily due to the differences in their intercondylar box and post geometry. The larger post in the revision implants resulted in tighter fit between the post and cam which restricted the knee joint motion. Increased conformity of the TKA revision system successfully reduced deviation in varus-valgus and internal-external rotations from baseline kinematics which may be desirable for patients with instability due to ligaments deficiency. For figures/tables, please contact authors directly.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 100 - 100
1 Feb 2020
Khasian M LaCour M Coomer S Komistek R
Full Access

Background. Although early TKA designs were symmetrical, during the past two decades TKA have been designed to include asymmetry, pertaining to either the trochlear groove, femoral condylar shapes or the tibial component. More recently, a new TKA was designed to include symmetry in all areas of the design, in the hopes of reducing design and inventory costs. Objective. The objective of this study was to determine the in vivo kinematics for subjects implanted with this symmetrical TKA during a weight-bearing deep knee bend activity. Methods. In vivo deep knee bend (DKB) kinematics for 21 subjects implanted with symmetrical posterior cruciate sacrificing (PCS) fixed bearing TKA were obtained using fluoroscopy. A 3D-to-2D registration technique was used to determine each subjects anteroposterior translation of lateral (LAP) and medial (MAP) femoral condyles and tibiofemoral axial rotation and their weight-bearing knee flexion. Results. During the DKB, the average maximum weight-bearing flexion was 111.7° ± 13.3°. On average, from full extension to maximum knee flexion, subjects experienced 2.5 mm ± 2.0 mm femoral rollback on lateral condyle −2.5 mm ± 2.2 mm of medial condyle motion in the anterior direction (Figure 1). This medial condyle motion was consistent for the majority of the subjects with the lateral condyle exhibiting rollback from 0° to 60° of flexion and then an average anterior slide of 0.3 mm from 60° to 90° of flexion. On average, the subjects in this study experienced 6.6° ± 3.3° of axial rotation, with most of rotation occurring in early flexion, averaging 4.9° (Figure 2). Discussion. Although subjects in this study were implanted with a symmetrical TKA, they did experience femoral rollback of the lateral condyle and positive axial rotation. Both of these kinematic parameters were normal-like in pattern, compared to the normal knee in early flexion, but in deeper flexion the pattern of motion varied from the normal knee. Also, the magnitude of posterior femoral rollback and axial rotation revealed similarities to previous fluoroscopy studies on subjects implanted with an asymmetrical TKA design. This was only a single surgeon study, so it is unclear if the results are TKA or surgeon influenced. Therefore, it is proposed that more patients be analyzed having this TKA implanted by other surgeons. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 12 - 12
1 Apr 2019
Zumbrunn T Schuetz P von Knoch F Preiss S List R Ferguson SJ
Full Access

BACKGROUND. UKA is functionally superior to TKA, with kinematics similar to native knees, nevertheless, UKA implants are used in less than 10% of cases. While advantages of UKA are recognized, ACL-deficiency is generally considered a contraindication. The hypothesis of this study was that fix bearing UKA in ACL-deficient knees, with appropriate adaptation of implant placement, would result in similar kinematic trends to conventional UKA with an intact ACL. METHODS. Ten conventional UKA patients were compared to eight patients with the same implant but a deficient ACL. A 50% tibial slope reduction was applied to compensate for instability resulting from the deficient ACL. Knee kinematics were evaluated using a moving fluoroscope allowing to track the knee joint during deep knee bend, level walking, ramp descent and stair descent. The results were further compared to six TKA patients. RESULTS. During standing, a posterior shift of the femur was observed for the ACL-deficient UKA patients compared to conventional UKA patients. This posterior shift was also present during the first 25% of deep knee bend. Most parameters revealed no difference in range of motion across all activities between the two UKA groups. This is in contrast to TKA patients showing different motion trends and decreased range of motion. CONCLUSIONS. Despite the posterior femoral shift due to ACL-deficiency, both UKA groups showed similar kinematic trends, indicating that posterior tibial slope reduction can partially compensate for ACL function. This confirmed our hypothesis that fix bearing UKA can be a viable treatment option for selected ACL-deficient patients


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 70 - 70
1 Feb 2020
Khasian M LaCour M Dessinger G Meccia B Komistek R
Full Access

Introduction. Forward solution joint models (FSMs) can be powerful tools, leading to fast and cost-efficient simulation revealing in vivo mechanics that can be used to predict implant longevity. Unlike most joint analysis methods, mathematical modeling allows for nearly instantaneous evaluations, yielding more rapid surgical technique and implant design iterations as well as earlier insight into the follow-up outcomes used to better assess potential success. The current knee FSM has been developed to analyze both the kinematics and kinetics of commercial TKA designs as well as novel implant designs. Objective. The objective of this study was to use the knee FSM to predict the condylar translations and axial rotation of both fixed- and mobile-bearing TKA designs during a deep knee bend activity and to compare these kinematics to known fluoroscopy evaluations. Methods. The knee joint is modeled mathematically using Kane's dynamics, incorporating muscle controllers to predict the muscle forces, contact detection algorithms to compute the knee joint forces, and nonlinear ligaments at the knee joint. The tibiofemoral kinematics data for 20 subjects implanted with fixed-bearing (FB) PS TKA and 20 subjects implanted with mobile-bearing (MB) PS TKA were collected using fluoroscopy data during a deep knee bend (DKB) activity from full extension to 120° of flexion. All subjects were implanted by the same surgeon. The same CAD models for these implanted were incorporated in the FSM to predict the tibiofemoral kinematics. The average component placement from fluoroscopy data were used as an initial condition for the placement of the component in the mathematical model. Results. Overall, fluoroscopy results showed patients experienced 6.8 mm and 6.4 mm posterior rollback of the lateral femoral condyle for FB and MB PS TKA groups, respectively. The FSM predicted 5.9 mm and 6.3 mm of lateral posterior rollback for FB and MB PS TKA models, respectively (Figure 1). On average, media condyle translated posteriorly −2.9 mm and −2.5 mm, for FB and MB subjects, respectively. The mathematical model prediction for FB and MB models was −1.4 mm and −2.4 mm, respectively (Figure 2). The overall axial rotation was 5.1° and 4.5°, for FB and MB subjects from fluoroscopy, respectively. The axial rotation prediction using the FSM was 6.0° and 4.2°, for FB and MB models, respectively (Figure 3). Conclusion. Overall, it is clear that the FSM can accurately predict both the patterns and magnitudes of fixed- and mobile-bearing TKA condylar translations and axial rotations, showing consistent rollback of the lateral condyle, less translation of the medial condyle, and consistent axial rotation throughout flexion, all of which were also observed in the fluoroscopy data. The correlation between the theoretically predicted and experimentally confirmed kinematic patterns demonstrates the viability of forward solution modeling as a valuable and accurate method to evaluate total joint replacement mechanics. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 118 - 118
1 May 2016
Grieco T Komistek R Sharma A Hamel W Zeller I
Full Access

Introduction. Recently, a mobile-fluoroscopy unit was developed which can capture subjects performing unconstrained motions, more accurately replicating everyday demands that patients place on their TKA. The objective of this study was to analyze normal knee and various TKA while subjects perform both traditional and more challenging activities while under surveillance of a mobile fluoroscopy unit. Methods. Two hundred and seventy-five knees were evaluated using mobile fluoroscopy, which tracks the patient and the joint of interest as they perform a set of activities. Mobile fluoroscopic surveillance was used to investigate patients with customized TKA and off the shelf TKA as well as subjects with posterior stabilized (PS) or posterior cruciate retaining (PCR) TKAs while performing the following activities: (1) deep knee bend, (2) chair-rise, (3) walking up and down steps, (4) normal walking, and/or (5) walking up and down a ramp (Figure 1). The mobile fluoroscopic unit captures images at 60 Hz using a flat panel X-ray detector and the unit follows the patient, using a marker-less system, while the patients perform each activity. Each video was digitized and analyzed to determine the 3D kinematics. Results. During more traditional activities, such as a deep knee bend (DKB) and chair-rise (CR), subjects having a customized PCR TKA experienced between 1.2 to 4.5 mm of more lateral condyle posterior femoral rollback (PFR) during a DKB compared to two traditional PCR TKAs, and 1.8 to 4.6 mm of more condylar roll forward during a CR, compared to two traditional TKAs. Interestingly, subjects having a single radius PCR TKA did experience more axial rotation than subjects having a multi-radius PCR TKA or a customized PCR TKA, but subjects having an asymmetric PCR TKA did experience a high incidence of reverse axial rotation. During more challenging activities such as walking up and down stairs and up and down a ramp, subjects having an asymmetric PCR TKA did experience greater sliding of their femoral component, more variability in AP positioning, and the femoral component experienced a higher angular orientation throughout the activity, compared to the other TKA designs. Subjects having a PS TKA did achieve greater rollback of their lateral condyle during a deep knee bend than the PCR TKA, but similar magnitudes of weight-bearing knee flexion. Discussion. In this present study, using a mobile fluoroscopy unit, it was determined that subjects having a TKA experienced different kinematic patterns than previously seen with stationary fluoroscopy, especially with respect to axial rotation as some TKA designs revealed a higher incidence of reverse axial rotation. While using a mobile fluoroscopy unit, we were able to assess in vivo kinematics while walking up and down stairs and a ramp, which did reveal higher magnitudes of femoral sliding, possibly due to the patient's ability to perform these activities in a less constrained environment. Mobile fluoroscopy has proven to be a very valuable tool for assessing a patients “true” motion patterns


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 69 - 69
1 Jan 2016
Iwamoto K Tomita T Yamazaki T Futai K Tamaki M Miyamoto T Sugamoto K
Full Access

Introduction. Posterior cruciate ligament (PCL) preservation in total knee arthroplasty (TKA) is adovocated on the grounds that it provides better restoration of knee joint kinematics as opposed to PCL sacrifice. Mobile-bearing (MB) total knee prostheses have been in the market for a long time, but the PFC-Sigma Rotating Platform (RP) prosthesis (DePuy Orthopaedics, Inc, Warsaw, Ind) has been introduced in the market since 2000. Since, little is known about the in vivo kinematics of MB prostheses especially with cruciate retaining (CR). The objective of this study is to investigate the in vivo kinematics of MB RP-CR total knee arthroplasty during weight-bearing deep knee bending motion. Patients and methods. We investigated the in vivo knee kinematics of 20 knees (17 patients) implanted with PFC-Sigma RP-CR. All TKAs were judged clinically successful (Hospital for Special Surgery scores >90), with no ligamentous laxity or pain. Mean patient age at the time of operation was 78.0 ± 6.0 years. Mean period between operation and surveillance was 15.0 ± 9.0 months. Under fluoroscopic surveillance, each patient did a wight-bearing deep knee bending motion. Femorotibial motion was analyzed using 2D/3D registration technique, which uses computer-assisted design (CAD) models to reproduce the spatial position of the femoral, tibial components from single-view fluoroscopic images. We evaluated the range of motion, axial rotation, and antero-posterior (AP) translation of the nearest point between the femoral and tibial component. Results. Between the femoral and tibial components, the mean minimum flexion angle was on average 2.1±5.5 °. The mean maximum flexion angle was 118.0±9.9 °. The average range of motion was 115.8±12.8°. The femoral component relative to the tibial component demonstrated 5.5±3.7° external rotation for 0–120 degrees flexion. At full extension, the medial nearest point was −2.4±2.7 mm, and the lateral nearest point was −8.4±3.4 mm. The medial nearest point moved 1.3 mm anteriorly from full extension to 90° of knee flexion, and then moved 1.5mm posteriorly until maximum flexion. On the other hand, the lateral nearest point moved 0.4mm posteriorly from full extension to 90° of knee flexion, and then moved 3.6mm posteriorly until maximum flexion. At maximum flexion, the medial nearest point moved posteriorly to a final position of −2.6±3.3 mm and the lateral nearest point moved posteriorly to a final position of −12.5±3.6 mm [Fig.1]. From the results of bilateral contact positions at each flexion angle, patterns of kinematic pathways were determined. The kinematic pathway pattern was externally rotated due to a central pivot pattern from extension to 90° knee flexion. Subsequently from 90 to 120°, bilateral condyles moved backward. Discussion and conclusion. In this study, we have evaluated the in vivo kinematics of MB prostheses with cruciate retaining motion during deep knee bending motion under weight-bearing condition. The results in this study demonstrated that the kinematic pathway pattern was externally rotated due to a central pivot pattern from extension to 90° knee flexion. Subsequently from 90 to 120°, bilateral condyles moved backward. This indicated that PCL functions


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 140 - 140
1 Apr 2019
Wakelin E Walter W Bare J Theodore W Twiggs J Miles B
Full Access

Introduction. Kinematics post-TKA are complex; component alignment, component geometry and the patient specific musculoskeletal environment contribute towards the kinematic and kinetic outcomes of TKA. Tibial rotation in particular is largely uncontrolled during TKA and affects both tibiofemoral and patellofemoral kinematics. Given the complex nature of post- TKA kinematics, this study sought to characterize the contribution of tibial tray rotation to kinematic outcome variability across three separate knee geometries in a simulated framework. Method. Five 50. th. percentile knees were selected from a database of planned TKAs produced as part of a pre-operative dynamic planning system. Virtual surgery was performed using Stryker (Kalamazoo, MI) Triathlon CR and PS and MatOrtho (Leatherhead, UK) SAIPH knee medially stabilised (MS) components. All components were initially planned in mechanical alignment, with the femoral component neutral to the surgical TEA. Each knee was simulated through a deep knee bend, and the kinematics extracted. The tibial tray rotational alignment was then rotated internally and externally by 5° & 10°. The computational model simulates a patient specific deep knee bend and has been validated against a cadaveric Oxford Knee Rig. Preoperative CT imaging was obtained, landmarking to identify all patient specific axes and ligament attachment sites was performed by pairs of trained biomedical engineers. Ethics for this study is covered by Bellberry Human Research Ethics Committee application number 2012-03-710. Results and Discussion. From the 360 Knee Systems database, 1847 knees were analysed, giving an average coronal alignment of 4.25°±5.66° varus. Five knees were selected with alignments between 4.1° and 4.3° varus. Kinematic outcomes were averaged over the 5 knees. The component geometries resulted in characteristically distinct kinematics, in which femoral rollback was most constrained by the PS components, whereas tibiofemoral axial rotation was most constrained in MS components. Patella lateral shift was comparable amongst all components in extension, medialising in flexion. Patella shift remained more lateral in MS components compared to PS and CR. Average patella lateral shift, medial and lateral facet rollback separated by tibial tray rotation are shown for all component systems in Figure 1. Medial and lateral facet rollback in the PS and CR components are symmetrical and opposite, indicating that with tibial tray rotation, the tibiofemoral articulation point balances between component rotation and neutral alignment, reflecting the restoring force exerted by the simulated collateral ligaments. As such, with higher internal tibial rotation and subsequent lateralisation of the tubercle, patella lateral shift increases. MS medial and lateral facet rollback however are not symmetrical nor opposite, reflecting the chirality of the tibiofemoral articulation. With internal tibial tray rotation, relatively high lateral facet rollback is observed, lateralising the femoral component centre, giving the patella component a relatively more medial position. Conclusions. Component geometry was found here to produce characteristically distinct tibiofemoral and patellofemoral kinematics. Medial stabilised components reported asymmetric kinematic changes, compared to either CR or PS components, in which a higher rate of change was observed for internal tray rotation, indicating that neutral or external rotation of medial stabilised components will result in more predictable kinematic outcomes


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 4 - 4
1 Feb 2021
Coomer S LaCour M Khasian M Cates H Komistek R
Full Access

Introduction. The patella experiences large forces and variable kinematic patterns throughout flexion which could influence function and patient satisfaction after a total knee arthroplasty (TKA). Therefore, the objective of this study is to analyze in vivo patellar mechanism forces and kinematics throughout flexion to determine influencing factors that may lead to patient dissatisfaction. Methods. Fifty subjects were evaluated in this study, 40 having a Journey II bi-cruciate stabilized (BCS) TKA and 10 having normal, healthy knees. Similar demographics were controlled for each group. Each subject performed a deep knee bend. Kinematics were evaluated using a validated 3D-to-2D fluoroscopic technique while forces were determined using a validated inverse mathematical knee model. A two-tailed t-test was used to evaluate statistical significance. Results. Subjects averaged 2.96 ± 0.30 xBW and 2.82 ± 0.27 xBW of maximum femorotibial contact forces, 4.07 ± 0.39 xBW and 3.30 ± 0.55 xBW of maximum quadriceps forces, and 4.20 ± 0.94 xBW and 3.94 ± 0.67 xBW of maximum patellofemoral forces for the BCS and normal groups, respectively. Therefore, the TKA subjects in this study experienced larger, but similar forces compared to the normal subjects. For both groups, lateral condylar rollback was correlated with both femorotibial contact forces (p<0.0001) and quadriceps forces (p<0.0002). Higher patellotibial tilt was correlated with lower patellofemoral contact forces (p=0.0294). Conclusion. Most TKAs resect the ACL and only substitute for the PCL in PS TKAs, but BCS subjects may receive an advantage for ACL substitution as they experienced normal-like kinematic and kinetic patterns. The lone exception seems to be the quadriceps forces which were higher in the BCS TKA group. This could be influenced by femoral condylar shape, leading to earlier quadriceps wrapping


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 109 - 109
1 Sep 2012
Mueller JK Sharma A Komistek R Meccia B
Full Access

Orthopaedic companies spend years and millions of dollars developing and verifying new total knee arthroplasty (TKA) designs. Recently, computational models have been used in the hopes of increasing the efficiency of the design process. The most popular predictive models simulate a cadaveric rig. Simulations of these rigs, although useful, do not predict in vivo behavior. Therefore, in this current study, the development of a physiological forward solution, or predictive, rigid body model of the knee is described. The models simulate a non-weight bearing extension activity or a weight-bearing deep knee bend (DKB) activity. They solve for both joint forces and kinematics simultaneously and were developed from the ground up. The models are rigid body and use Kane's dynamical equations. The model began with a simple two dimensional non-weight bearing extension activity model of the tibiofemoral joint. Step by step the model was expanded. Quadriceps and hamstring muscles were added to drive the motion. Ligaments were added represented by multiple non-linear spring elements. The model was expanded to three-dimensions (3D) allowing out of plane motions and calculation of medial and lateral condylar forces. The patella was added as its own body allowing for simulation of the patellofemoral joint. The model was then converted to a weight bearing deep knee bend activity. A pelvis and trunk were added and muscles were given physiological origin and insertion points. A modified proportional-integral-derivative (PID) controller was implemented to control the rate of flexion and also to assist in joint stability by adjusting the force in individual quadriceps muscles. A method for representing articulating geometry was developed. Once the deep knee bend model was fully developed (Figure 1) it was converted back to a non-weight bearing extension model (Figure 2) resulting in simulations of a normal knee performing a weight bearing and non-weight bearing activity. The tibiofemoral kinematic results were compared to in vivo kinematics obtained from a fluoroscopy study of five normal subjects. Parameters from the CT models of one of these subjects (Subject 3) were used in the model. The model kinematics behave as the normal knee does in vivo. The kinetic results were within reasonable ranges with a maximum total quadriceps force of 0.86 BW and 4.73 BW for extension and DKB simulations, respectively (Figure 3 and Figure 4). The maximum total tibiofemoral forces were 1.26 BW and 3.70 BW for extension and DKB, respectively. The relationship between the quadriceps force, patella ligament force and patellofemoral forces are consistent with how the extensor mechanism behaves (Figure 3 and Figure 4). The patellofemoral forces are low between 0 and 20 degrees flexion and the patella ligament and quadriceps forces are close in magnitude from 0 to around 70 degrees flexion when the patellofemoral forces increase and the quadriceps forces increase relative to the patella ligament force. The model allows for virtual implantation of TKA geometry and after kinematic and kinetic validation from in vivo TKA data can be used to predict the behavior of TKA in vivo


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 169 - 169
1 Sep 2012
Dressler M Leszko F Zingde S Sharma A Dennis D Komistek R
Full Access

INTRODUCTION. Knee simulators are being used to evaluate wear. The current international standards have been developed from clinical investigations of the normal knee [1, 2] or from a single TKA patient [3, 4]. However, the forces and motions in a TKA patient differ from a normal knee and, furthermore, the resulting kinematic outcomes after TKA will depend on the design of the device [5]. Consequently, these standard tests may not recreate in-vivo conditions; therefore, the goal of this study was to perform a novel wear simulation using design-specific inputs that have been derived from fluoroscopic images of a deep knee bend. METHODS. A wear simulation was developed using fluoroscopic data from a pool of eighteen TKA patients performing a deep knee bend. All patients had a Sigma CR Fixed Bearing implant (DePuy) and were well functioning (Knee Society Score > 90). A single patient was selected that represented the typical motions, which was characterized by early rollback followed by anterior motion with an overall modest internal tibial rotation (Figure 1). The relative motion between the femoral and tibial components was transformed to match the coordinate system of an AMTI knee wear simulator [6] and a compressive load input was derived using inverse dynamics [7]. The resulting force and motions (Figure 2) were then applied in a wear simulation with 5 MRad crosslinked and remelted polyethylene for 3 Mcyc at 1 Hz. Components were carefully positioned and each joint (n=3) was tested in 25% bovine calf serum (Hyclone Laboratories), which was recirculated at 37±2°C [3]. Serum was supplemented with sodium azide and EDTA. Wear was quantified gravimetrically every 0.5 Mcyc using a digital balance (XP250, Mettler-Toledo) with load soak compensation. RESULTS. The knee simulator was able to recreate the in-vivo input kinematics. The femoral low point location revealed good agreement between in-vivo and in-vitro conditions and the overall pattern of the motion from full extension to maximum knee flexion was replicated (Figure 3). The measured wear from these inputs was very low (0.7 ± 0.2 mg/Mcyc). DISCUSSION. We have performed a device-specific wear simulation for a deep knee bend. Surprisingly, the wear associated with this activity was very low. It is possible that abnormal kinematics, including paradoxical anterior slide and reverse rotation, would generate higher wear. The deviations the between in-vivo and in-vitro kinematics (Figure 3) are likely due to a size mismatch across the transformation process. In a previous study [7] we recreated the in-vivo motions with better fidelity (RMS error = 0.6mm) using size matched components. Further work is needed to improve the transformation technique for different sized components. Also, similar approaches will be used in future investigations to study the effect of abnormal kinematics as well as other designs including rotating platform and cruciate substituting devices


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 48 - 48
1 Feb 2021
Khasian M LaCour M Dennis D Komistek R
Full Access

Introduction. A common goal of total knee arthroplasty (TKA) is to restore normal knee kinematics. While substantial data is available on TKA kinematics, information regarding non-implanted knee kinematics is less well studied especially in larger patient populations. The objectives of this study were to determine normal femorotibial kinematics in a large number of non-implanted knees and to investigate parameters that yield higher knee flexion with weight-bearing activities. Methods. Femorotibial kinematics of 104 non-implanted healthy subjects performing a deep knee bend (DKB) activity were analyzed using 3D to 2D fluoroscopy. The average age and BMI were 38.1±18.2 years and 25.2±4.6, respectively. Pearson correlation analysis was used to determine statistical correlations. Results. On average, subjects experienced 21.5±7.2 mm, 13.8±8.9 mm, and 27.1°±12.1° of lateral rollback, medial rollback, and external femorotibial axial rotation, respectively (Figure 1). Most rollback occurred in early flexion, with 10.2±6.4 mm and 5.3±6.3 mm of rollback for the lateral and medial condyles, respectively. While the lateral condyle consistently moved posteriorly, the medial condyle experienced 1.8±4.8 mm of anterior sliding between 90° to 120° of flexion. There was a positive correlation between higher weight-bearing flexion and lateral condylar rollback (r=0.5480, p<.0001) (Figure 2), medial condylar rollback (r=0.3188, p=0.001) (Figure 3), and external axial rotation (r=0.5505, p<.0001) (Figure 4). There was an inverse correlation between advancing age and knee flexion (r=-0.7358, p<.0001) as well as higher BMI and flexion (r=-0.3332, p=0.0007), indicating that multiple factors contribute to postoperative range-of-motion. Conclusion. This represents one of the largest studies on normal knee femorotibial kinematics in non-implanted healthy subjects. These results indicate that increased condylar rollback and external axial rotation correlate with increased weight-bearing knee flexion, while increased age and BMI yield decreased flexion. Therefore, in order to achieve higher weight-bearing flexion following TKA, normal-like kinematics such as high rollback and external axial rotation should be incorporated into TKA design. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 51 - 51
1 Feb 2021
Smith L Cates H Freeman M Nachtrab J Komistek R
Full Access

Background. While posterior cruciate retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bi-cruciate retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. Various fluoroscopic studies have focused on determination of kinematics but haven't defined differentiators that affect motion patterns. This research study assesses the importance of the cruciate ligaments and femoral geometry for Bi-Cruciate Retaining (BCR) and Posterior Cruciate Retaining (PCR) TKAs having the same femoral component, compared to the normal knee. Methods. The in vivo 3D kinematics were determined for 40 subjects having a PCR TKA, 10 having a BCR TKA, and 10 having a normal knee, in a retrospective study. All TKA subjects had the same femoral component. All subjects performed a deep knee bend under fluoroscopic surveillance. The kinematics were determined during early flexion (ACL dominant), mid flexion (ACL/PCL transition) and deep flexion (PCL dominant). Results. During the first 30 degrees of flexion, the ACL played an important role, as subjects having a BCR TKA experienced kinematic patterns more similar to the normal knee. During mid flexion, both TKAs experienced random kinematic patterns, which could be due to the ACL and PCL being less active or resected in PCR TKA. In deeper flexion, both TKAs experienced kinematic patterns similar to the normal knee, thus supporting the assumption that the PCL played a dominant role [Fig. 1, Fig. 2]. All three groups generally experienced progressive axial rotation throughout flexion [Fig. 3]. On average, subjects having a PCR TKA experienced 112.3° of flexion, which was greater than the BCR subjects. Conclusions. Both the BCR TKA and normal groups experienced similar kinematic patterns, but the femoral geometrical differences from the anatomical condition may have influenced decreased motion compared to the normal knee. Both TKAs experienced similar kinematic patterns in deeper flexion, with the PCR TKA experiencing excellent weight-bearing flexion. Results from this study suggest that the cruciate ligaments can play a role in kinematics, but femoral geometry working with the ligaments may be an option to consider


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 2 - 2
1 Jun 2012
Acker S Kutzner I Bergmann G Deluzio K Wyss U
Full Access

Accurate in vivo knee joint contact forces are required for joint simulator protocols and finite element models during the development and testing of total knee replacements (Varadarajan et al., 2008.) More accurate knowledge of knee joint contact forces during high flexion activities may lead to safer high flexion implant designs, better understanding of wear mechanisms, and prevention of complications such as aseptic loosening (Komistek et al., 2005.) High flexion is essential for lifestyle and cultural activities in the developing world, as well as in Western cultures, including ground-level tasks and chores, prayer, leisure, and toileting (Hemmerich et al., 2006.) In vivo tibial loads have been reported while kneeling; but only while the subject was at rest in the kneeling position (Zhao et al., 2007), meaning that the loads were submaximal due to muscle relaxation and thigh-calf contact support. The objective of this study was to report the in vivo loads experienced during high flexion activities and to determine how closely the measured axial joint contact forces can be estimated using a simple, non-invasive model. It provides unique data to better interpret non-invasively determined joint-contact forces, as well as directly measured tiobiofemoral joint contact force data for two subjects. Two subjects with instrumented tibial implants performed kneeling and deep knee bend activities. Two sets of trials were carried out for each activity. During the first set, an electromagnetic tracking system and two force plates were used to record lower limb kinematics and ground reaction forces under the foot and under the knee when it was on the ground. In the second set, three-dimensional joint contact forces were directly measured in vivo via instrumented tibial implants (Heinlein et al., 2007.) The measured axial joint contact forces were compared to estimates from a non-invasive joint contact force model (Smith et al., 2008.). The maximum mean axial forces measured during the deep knee bend were 24.2 N/kg at 78.2° flexion (subject A) and 31.1 N/kg at 63.5° flexion (subject B) during the deep knee bend (Figure 1.) During the kneeling activity, the maximum mean axial force measured was 29.8 N/kg at 86.8° flexion (subject B.) While the general shapes of the model-estimated curves were similar to the directly measured curves, the axial joint contact force model underestimated the measured contact forces by 7.0 N/kg on average (Figure 2.) The most likely contributor to this underestimation is the lack of co-contraction in the model. The study protocol was limited in that data could not be simultaneously collected due to electromagnetic interference between the motion tracking system and the inductively powered instrumented tibial component. Because skin-mounted markers were used, kinematics may be affected by skin motion artefacts. Despite these limitations, this study presents valuable information that will advance the development of high flexion total knee replacements. The study provides in vivo measurements and non-invasive estimates of joint contact forces during high flexion activities that can be used for joint simulator protocols and finite element modeling


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 119 - 119
1 Feb 2017
Fitzwater F Shalhoub S Clary C Akhbari B Maletsky L
Full Access

Introduction. During primary total knee arthroplasty (TKA), surgeons occasionally encounter compromised bone and fixation cannot be achieved using a primary femoral component. Revision knee replacement components incorporate additional features to improve fixation, such as modular connection to sleeves or stems, and feature additional varus-valgus constraint in the post-cam mechanism to compensate for soft tissue laxity. The revision femoral component can be used in place of the primary femur to address fixation challenges; however, it is unclear if additional features of the revision femoral components adversely affect knee kinematics when compared to primary TKA components. The objective of this study was to compare weight-bearing tibiofemoral and patellofemoral kinematics between primary and revision femoral component with the primary tibial insert for a single knee replacement system. The hypothesis of the study was that kinematics for revision femoral components will be similar to kinematics of the primary femoral components. Methods. Eight cadaveric knees (age: 59±10 years, BMI 23.3±3.5) were implanted with a primary TKA system (ATTUNE™ Posterior Stabilized Total Knee Replacement System). Each knee was mounted and aligned in the Kansas Knee Simulator (Fig. 1) [1]. A deep knee bend was performed which flexed the knee from full extension to 110° flexion, while the medial-lateral translation, internal-external, and varus-valgus rotations at the ankle were unconstrained. The femoral component was then replaced with a revision femoral component of the same TKA system, articulating on the same primary insert component, and the deep knee bend was repeated. The translations of the lowest points (LP) of the medial and lateral femoral condyles along the superior-inferior axis of the tibia were calculated. In addition, tibiofemoral and patellofemoral kinematics were calculated for each cycle based on the Grood-Suntay coordinate system [2] [1]. The change in LP and patellofemoral kinematics from the primary to revision femurs were calculated. Student t-tests were performed at 5° increments of knee flexion to identify significant differences between the two implant types. Results. No significant differences were observed between primary and revision femur for both LP and patellofemoral kinematics (Fig 2,3). The revision femoral anterior-posterior lowest point translations were similar to that of the primary femur. Deviations in patellofemoral spin, tilt, and flexion were less than one degree throughout the range of flexion. Patellofemoral translations were less than .5 mm during mid-flexion and greatest deviations were observed during early flexion. Less than .5° deviation was observed in tibiofemoral VV and IE rotations. Discussion. Typical knee revision systems have compromised knee mechanics to improve femoral fixation, yielding poorer functional outcomes and high rates of reoperation [3, 4]. The primary and revision femoral components in this knee system have identical condylar articular geometry which explains the similarity in patellofemoral and tibiofemoral kinematics. Small difference in tibiofemoral kinematics could be a result of implant fixations using bone cement which slightly alters implant alignments between primary and revision surgeries. The revision femur resulted in similar kinematics and can be used during primary TKA when a stem is need for additional implant fixation without affecting the knee contact mechanics. For figures, please contact authors directly


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 132 - 132
1 Jan 2016
Fitzpatrick CK Nakamura T Niki Y Rullkoetter P
Full Access

Introduction. A large number of total knee arthroplasty (TKA) patients, particularly in Japan, India and the Middle East, exhibit anatomy with substantial proximal tibial torsion. Alignment of the tibial components with the standard anterior-posterior (A-P) axis of the tibia can result in excessive external rotation of the tibial components with respect to femoral component alignment. This in turn influences patellofemoral (PF) mechanics and forces required by the extensor mechanism. The purpose of the current study was to determine if a rotating-platform (RP) TKA design with an anatomic patellar component reduced compromise to the patellar tendon, quadriceps muscles and PF mechanics when compared to a fixed-bearing (FB) design with a standard dome-shaped patellar component. Methods. A dynamic three-dimensional finite element model of the knee joint was developed and used to simulate a deep knee bend in a patient with excessive external tibial torsion (Figure 1). Detailed description of the model has been previously published [1]. The model included femur, tibia and patellar bones, TKA components, patellar ligament, quadriceps muscles, PF ligaments, and nine primary ligaments spanning the TF joint. The model was virtually implanted with two contemporary TKA designs; a FB design with domed patella, and a RP design with anatomic patella. The FB design was implanted in two different alignment conditions; alignment to the tibial A-P axis, and optimal alignment for bone coverage. Four different loading conditions (varying internal-external (I-E) torque and A-P force) were applied to the model to simulate physiological loads during a deep knee bend. Quadriceps muscle force, patellar tendon force, and PF and TF joint forces were compared between designs. Results. The RP design demonstrated consistently lower medial-lateral (M-L) force at the PF joint than the FB design, with greater differences between designs in later flexion once the patella was engaged in the sulcus groove; root-mean-square (RMS) differences in M-L force averaged 50 N less in the RP design throughout the flexion cycle, and 70 N less after 45° flexion (Figure 2). The FB design aligned for optimal bone coverage demonstrated 15% higher M-L forces than the FB design aligned with the tibial A-P axis. RMS load required by the quadriceps muscle was 60 N lower with the RP design than the FB design throughout the cycle (Figure 2). Discussion. Comparing a RP design with an anatomic patellar component and a FB design with a domed patellar component, the RP design demonstrated lower M-L PF joint and soft-tissue extensor mechanism forces. Differences were more pronounced under conditions of high I-E torque where the RP design accommodated large relative TF rotation. Differences in FB alignment resulted in substantially different PF M-L forces; when the FB component was mal-aligned with respect to the tibial A-P axis (and the line-of-action of the patellar tendon) the resulting M-L PF force was increased. The RP design reduced the demands on the extensor mechanism and loads on the PF joint and facilitated better coverage of the resected tibial bone surface


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 154 - 154
1 May 2016
Zumbrunn T Varadarajan K Rubash H Malchau H Li G Muratoglu O
Full Access

INTRODUCTION. In native knees anterior cruciate ligament (ACL) and asymmetric shape of the tibial articular surface with a convex lateral plateau are responsible for differential medial and lateral femoral rollback. Contemporary ACL retaining total knee arthroplasty (TKA) improves knee function over ACL sacrificing (CR) TKA; however, these implants do not restore the asymmetric tibial articular geometry. This may explain why ACL retention addresses paradoxical anterior sliding seen in CR TKA, but does not fully restore medial pivot motion. To address this, an ACL retaining biomimetic implant, was designed by moving the femoral component through healthy in vivo kinematics obtained from bi-planar fluoroscopy and sequentially removing material from a tibial template. We hypothesized that the biomimetic articular surface together with ACL preservation would better restore activity dependent kinematics of normal knees, than ACL retention alone. METHODS. Kinematic performance of the biomimetic BCR design (asymmetric tibia with convex lateral surface), a contemporary BCR implant (symmetric shallow dished tibia) and a contemporary CR implant (symmetric dished tibia) was analyzed using KneeSIM software. Chair-sit, deep knee bend, and walking were analyzed. Components were mounted on an average bone model created from magnetic resonance imaging (MRI) data of 40 normal knees. Soft-tissue insertions were defined on the average knee model based on MRI data, and mechanical properties were obtained from literature. Femoral condyle center motions relative to the tibia were tracked to compare different implant designs. RESULTS. During simulated chair-sit, the biomimetic BCR implant showed knee motion similar to that reported for healthy knees in vivo including medial pivot rotation with greater rollback of the lateral femoral condyle (5 mm medial vs. 11 mm lateral). The CR implant showed posterior femoral subluxation in extension, paradoxical anterior sliding until 60° flexion followed by limited rollback until 105° with no medial pivot rotation. The conventional BCR implant reduced initial posterior shift of the femur in extension, however, medial pivot rotation and steady posterior rollback was not achieved. Similar trends were also found for deep knee bend activity. During walking the CR implant showed posterior subluxation in extension followed by anterior motion similar to the chair-sit activity. Both BCR implants showed less femoral excursion without posterior subluxation similar to published in vivo kinematics data for bi-uni patients. CONCLUSION. By simulating a variety of daily activities with different ranges of knee motion we were able to show that the ACL preserving biomimetic TKA implant could restore activity dependent normal knee kinematics unlike contemporary ACL retaining and ACL sacrificing implants. For chair-sit activity there was a clear medial pivot pattern for the biomimetic BCR design (unlike any other implant), while for lower flexion activities there was no medial pivot apparent in our simulations. These activity dependent knee motions are consistent with published in vivo kinematics and confirmed our hypothesis that biomimetic articular surface together with ACL preservation may be required to restore normal knee function. The biomimetic BCR design with its anatomical articular surface together with ACL preservation may provide patients with a more normal feeling knee following TKA surgery