Advertisement for orthosearch.org.uk
Results 1 - 20 of 29
Results per page:
The Bone & Joint Journal
Vol. 96-B, Issue 5 | Pages 597 - 603
1 May 2014
Nomura T Naito M Nakamura Y Ida T Kuroda D Kobayashi T Sakamoto T Seo H

Several radiological methods of measuring anteversion of the acetabular component after total hip replacement (THR) have been described. These studies used different definitions and reference planes to compare methods, allowing for misinterpretation of the results. We compared the reliability and accuracy of five current methods using plain radiographs (those of Lewinnek, Widmer, Liaw, Pradhan, and Woo and Morrey) with CT measurements, using the same definition and reference plane. We retrospectively studied the plain radiographs and CT scans in 84 hips of 84 patients who underwent primary THR. Intra- and inter-observer reliability were high for the measurement of inclination and anteversion with all methods on plain radiographs and CT scans. The measurements of inclination on plain radiographs were similar to the measurements using CT (p = 0.043). The mean difference between CT measurements was 0.6° (-5.9° to 6.8°).

Measurements using Widmer’s method were the most similar to those using CT (p = 0.088), with a mean difference between CT measurements of -0.9° (-10.4° to 9.1°), whereas the other four methods differed significantly from those using CT (p < 0.001).

This study has shown that Widmer’s method is the best for evaluating the anteversion of the acetabular component on plain radiographs.

Cite this article: Bone Joint J 2014; 96-B:597–603.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 75 - 75
19 Aug 2024
Hieda Y Choe H Ike H Abe K Shimoda M Kumagai K Kobayashi N Inaba Y
Full Access

Dislocation is a serious complication to be avoided in total hip arthroplasty (THA) and its incidence risk increases in revision surgery. Combined anteversion (CA) of the cup and stem is a concept for appropriate implant positioning; however, the effect of functional changes in femoral rotation has not been well investigated. The aim of this study was to investigate whether functional CA, considering femoral rotation, is associated with dislocation in patients undergoing revision THA. Seventy-three patients who underwent revision THA and had at least one year of follow-up with pre- and postoperative supine CT imaging were included. Cup and stem were placed with a target combined angle of 37.3° using Widmer's formula. Anatomical and functional CA was calculated postoperatively using the following formula: Anatomical CA: cup anteversion + 0.7 × anatomical stem anteversion; Functional CA: cup anteversion + 0.7 × (anatomical stem anteversion + femoral rotation). Patient demographics, cup and stem angles, CA and their relationship to dislocation were statistically evaluated. Dislocation was observed in 12 patients. In these dislocated cases, there were no significant differences in cup angle, stem angle and anatomical CA compared to non-dislocated cases. However, dislocated cases showed significantly higher values of functional CA [52.7 ± 17.5° (range, 5.9–69.3) vs. 36.0 ± 12.5° (range, 8.6–68.8), p=0.009] and significant deviation from identical CA [17.3 ± 9.6° (range, 2.8–32) vs. 7.5 ± 7.1° (range, 0.1–28.7), p=0.010]. Functional CA considering femoral rotation was associated with dislocation in revision THA patients. This finding suggests that consideration of femoral rotation may be necessary for implant positioning in revision THA


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1766 - 1773
1 Dec 2021
Sculco PK Windsor EN Jerabek SA Mayman DJ Elbuluk A Buckland AJ Vigdorchik JM

Aims. Spinopelvic mobility plays an important role in functional acetabular component position following total hip arthroplasty (THA). The primary aim of this study was to determine if spinopelvic hypermobility persists or resolves following THA. Our second aim was to identify patient demographic or radiological factors associated with hypermobility and resolution of hypermobility after THA. Methods. This study investigated patients with preoperative posterior hypermobility, defined as a change in sacral slope (SS) from standing to sitting (ΔSS. stand-sit. ) ≥ 30°. Radiological spinopelvic parameters, including SS, pelvic incidence (PI), lumbar lordosis (LL), PI-LL mismatch, anterior pelvic plane tilt (APPt), and spinopelvic tilt (SPT), were measured on preoperative imaging, and at six weeks and a minimum of one year postoperatively. The severity of bilateral hip osteoarthritis (OA) was graded using Kellgren-Lawrence criteria. Results. A total of 136 patients were identified as having preoperative spinopelvic hypermobility. At one year after THA, 95% (129/136) of patients were no longer categorized as hypermobile on standing and sitting radiographs (ΔSS. stand-sit. < 30°). Mean ΔSS. stand-sit. decreased from 36.4° (SD 5.1°) at baseline to 21.4° (SD 6.6°) at one year (p < 0.001). Mean SS. seated. increased from baseline (11.4° (SD 8.8°)) to one year after THA by 11.5° (SD 7.4°) (p < 0.001), which correlates to an 8.5° (SD 5.5°) mean decrease in seated functional cup anteversion. Contralateral hip OA was the only radiological predictor of hypermobility persisting at one year after surgery. The overall reoperation rate was 1.5%. Conclusion. Spinopelvic hypermobility was found to resolve in the majority (95%) of patients one year after THA. The increase in SS. seated. was clinically significant, suggesting that current target recommendations for the hypermobile patient (decreased anteversion and inclination) should be revisited. Cite this article: Bone Joint J 2021;103-B(12):1766–1773


Dual mobility cups (DMC) reduce the risk of dislocation in femoral neck fractures (FNF). Direct anterior approach (DAA), historically promoted for better stability, has been developed in recent years for better functional results. The aim of this study was to compare the early functional results of DMC in FNF by DAA versus posterolateral approach (PLA). A prospective study was conducted on a continuous series of patients who received DMC for FNF by DAA or PLA. The primary endpoint was Harris Hip Score and Parker score assessed at the first follow-up visit. Intraoperative complications were collected during hospitalization. One year clinical results and all cause revision rate were also collected. Radiographic data of cup positioning and limb length were evaluated. Fifty-two patients were included in the DAA group and 54 in the PLA group. Two patients were lost to follow-up. The mean age was 72.8 years. There was no significant difference in HHS or Parker score at 3 and 12 months follow up (p=0.6, p= 0.75). DAA was associated with more intraoperative complications with 4 fractures and 1 femoral nerve deficit (p=0.018). There were 3 revisions in the DAA group (1 infection, 1 dislocation, 1 peri prosthetic fracture) and 1 in the PLA group (infection), which was not statistically significant (p=0.34). Cup anteversion was 6° greater and inclination 9° lesser in DAA group (p=0.028, p<0.01). Results suggest that DAA does not provide any early functional benefit in THA-DMC for FNF compared to PLA. It could lead to more intraoperative complications and a higher revision rate. DAA requires an experienced surgeon and careful patient selection


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_11 | Pages 20 - 20
7 Jun 2023
Navacchia A Pagkalos J Davis E
Full Access

We have previously reported on the improved all-cause revision and improved revision for instability risk in lipped liner THAs using the NJR dataset. These findings corroborate studies from the Australian (AOANJRR) and New Zealand (NZOA) joint registries. The optimal orientation of the lip in THAs utilising a lipped liner remains unclear to many surgeons. The aim of this study was to identify impingement-free optimal liner orientations whilst considering femoral stem version, cup inclination and cup version. A cementless THA kinematic model was developed using a 20 degree XLPE liner. Physiological ROM and provocative dislocation manoeuvre analyses were performed. A total of 9 cup positions were analysed (inclination 30–40–50 degrees, anteversion 5-15-25 degrees) and combined with 3 stem positions (anteversion 0-15-30 degrees) and 5 lip orientations (right hip 11 to 7 o'clock). Some lip orientation/component position combinations lead to impingement within the physiological ROM range. Using a lipped liner increases the femoral head travel distance prior to dislocation when impingement occurs in the plane of the lip. In THAs with a cup inclination of 30 and 40 degrees, inferior lip orientations (7–8 o'clock for a right hip) performed best. Superior lip orientation performed best with a cup inclination of 50 degrees. Femoral stem version has a significant effect on the range of movement prior to impingement and hence the preferred lip orientation. The optimal orientation of the lip in lipped liner THA is dependent on the position of both the acetabular and femoral components. In the common component orientation combination of stem anteversion 15, cup inclination 40 and cup anteversion 15, the optimal lip orientation was postero-inferiorly (8 o'clock for a right hip). Preventing impingement during physiological ROM is possible with appropriate lip liner orientation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 93 - 93
19 Aug 2024
Schaffler BC Robin JX Katzman JL Manjunath A Davidovitch R Rozell JC Schwarzkopf R
Full Access

The purpose of this study was to assess the variability in implant position between sides in patients who underwent staged, bilateral THA and whether variation from one side to the other affected patient-reported outcomes. A retrospective review was conducted on 207 patients who underwent staged, bilateral THA by the same surgeon from 2017–2022. Leg length, acetabular height, cup version, and coronal and sagittal stem angles were assessed radiographically and compared to the contralateral THA. Surgical approach and technology utilization were further assessed for their impact on variability. Linear regression was used to model the relationship between side-to-side variability and patient-reported outcome measures (PROMS). Between sides, mean radiographic leg length varied by 4.6mm (0.0–21.2), acetabular height varied by 3.3mm (0.0–13.7), anteversion varied by 8.2° (0.0 to 28.7), coronal stem alignment varied by 1.1° (0.0 to 6.9), and sagittal angulation varied by 2.3° (0.0 to 10.5). The anterior approach resulted in more variability in stem angle position in both the coronal (1.3° vs. 1.0°, p=0.036) and sagittal planes (2.8° vs. 2.0° p=0.012) compared to the posterior approach. The posterior approach generally led to more anteversion than the anterior approach. Use of robotics or navigation for acetabular positioning did not increase side-to-side variability in cup-related position or leg length. Despite considerable side-to-side variability, Hip dysfunction and osteoarthritis outcome scores (HOOS JR) were not affected by higher levels of position inconsistency. Staged, bilateral THA results in considerable variability in component position between sides. The anterior approach leads to more side-to-side variability in sagittal stem angle and cup anteversion than the posterior approach. Navigation and robotics do not improve the consistency of component position in bilateral THA. Variation in implant position was not associated with differences in PROMs, suggesting that despite variability, patients can tolerate these differences between sides


Bone & Joint Open
Vol. 2, Issue 10 | Pages 834 - 841
11 Oct 2021
O'Connor PB Thompson MT Esposito CI Poli N McGree J Donnelly T Donnelly W

Aims. Pelvic tilt (PT) can significantly change the functional orientation of the acetabular component and may differ markedly between patients undergoing total hip arthroplasty (THA). Patients with stiff spines who have little change in PT are considered at high risk for instability following THA. Femoral component position also contributes to the limits of impingement-free range of motion (ROM), but has been less studied. Little is known about the impact of combined anteversion on risk of impingement with changing pelvic position. Methods. We used a virtual hip ROM (vROM) tool to investigate whether there is an ideal functional combined anteversion for reduced risk of hip impingement. We collected PT information from functional lateral radiographs (standing and sitting) and a supine CT scan, which was then input into the vROM tool. We developed a novel vROM scoring system, considering both seated flexion and standing extension manoeuvres, to quantify whether hips had limited ROM and then correlated the vROM score to component position. Results. The vast majority of THA planned with standing combined anteversion between 30° to 50° and sitting combined anteversion between 45° to 65° had a vROM score > 99%, while the majority of vROM scores less than 99% were outside of this zone. The range of PT in supine, standing, and sitting positions varied widely between patients. Patients who had little change in PT from standing to sitting positions had decreased hip vROM. Conclusion. It has been shown previously that an individual’s unique spinopelvic alignment influences functional cup anteversion. But functional combined anteversion, which also considers stem position, should be used to identify an ideal THA position for impingement-free ROM. We found a functional combined anteversion zone for THA that may be used moving forward to place total hip components. Cite this article: Bone Jt Open 2021;2(10):834–841


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_13 | Pages 41 - 41
1 Oct 2018
Tatka J Brady AW Matta JM
Full Access

Introduction. Accurate acetabular position is an important goal during THA. It is also well known that accurate acetabular positioning is very frequently not achieved, even by experienced, high volume surgeons. Problems associated with cup malposition are: dislocation, accelerated poly wear, impingement, ceramic squeaking, metalosis. Murray et al described 3 methods of measurement and assessment of acetabular inclination and anteversion (I&A): anatomic, radiographic and operative. It is the hypothesis of the authors, that the differences and details of these 3 methods are poorly understood by many surgeons and this is contributory to inconsistent cup positioning. Additionally, the radiographic method, which is most commonly used for post op assessment and academic studies, contributes to misunderstanding and error. Modern computer guidance and software assessment of radiographs allows us to easily measure anatomic I&A which should be thought of as “true” I&A. Methods. The mathematical criteria for radiographic measurement of anatomic I&A are defined as well as the mathematical relationships and discrepancies between anatomic and radiographic I&A for any given cup. A. =. A. n. g. l. e.  . o. f.  . a. n. t. e. v. e. r. s. i. o. n.  . o. f.  . c. u. p. I. =. A. n. g. l. e.  . o. f.  . i. n. c. l. i. n. a. t. i. o. n.  . o. f.  . c. u. p. E = Angle of ellipse major diameter to horizontal. E = Radiographic inclination. Sin.  . A. =. H. o. r. i. z. o. n. t. a. l.  . w. i. d. t. h.  . o. f.  . e. l. l. i. p. s. e. L. e. n. g. t. h.  . o. f.  . e. l. l. i. p. s. e.  . m. a. j. o. r.  . d. i. a. m. e. t. e. r. Sin.  . I. =. V. e. r. t. i. c. a. l.  . h. e. i. g. h. t.  . o. f.  . e. l. l. i. p. s. e. L. e. n. g. t. h.  . o. f.  . e. l. l. i. p. s. e.  . m. a. j. o. r.  . d. i. a. m. e. t. e. r. Tan I = Tan E / Cos A. Tan E = (Tan I) x (Cos A). Results. Numerical values for radiographic I&A and anatomic I&A coincide for cups placed at 0 degrees anteversion. However, as cup anteversion increases, there is an exponentially increasing discrepancy between anatomic and radiographic inclination values with I always having a higher value than E. Commonly used radiographic inclination values (E) therefore always underestimate anatomic (true) inclination. Additionally, radiographic anteversion, except for 0 degrees anteversion, always underestimates anatomic (true) anteversion. Wear testing of cups by manufacturers and associated recommendations for cup positioning are based on anatomic measurement of inclination while surgeons now use a different method (radiographic) for measuring position. Axial CT analysis of cup anteversion agrees mathematically with anatomic anteversion and does not mathematically agree with the Murray radiographic criteria. Conclusions. Surgeons can intuitively understand that accurate radiographic measurement of femoral neck-shaft angle can only be done if the proximal femur is correctly rotated in relation to the x-ray beam, specifically the x-ray beam must be perpendicular to the plane determined by the intersection of the center lines of the neck and shaft. Any other femoral rotation will show a false increase in the neck shaft angle. Though less intuitive, true cup I is only represented by the angle seen on x-ray at only one A value, 0 degrees. Anteverting the cup as is desirable for THA stability creates a discrepancy between the apparent cup angle (E) and true inclination. Since the principles of solid geometry are widely adopted and accepted, the above results and conclusions are based on mathematical proof, not experimental findings. Erroneous conclusions such as “the cup position is good but the hip still dislocates” can be associated with a surgeon's lack of understanding of true I&A. Surgeons need to understand the differences between what they believe to be represented by x-rays and anatomic or true I&A as represented by the cup's position in relation to the body's transverse, coronal, and sagittal planes and x, y, and z axes. The authors believe that a surgeon's continued lack of understanding of the mathematics can be compensated for by the technologies of computer guidance and/or software analysis of cup x-rays


Bone & Joint Open
Vol. 4, Issue 1 | Pages 3 - 12
4 Jan 2023
Hardwick-Morris M Twiggs J Miles B Al-Dirini RMA Taylor M Balakumar J Walter WL

Aims

Iliopsoas impingement occurs in 4% to 30% of patients after undergoing total hip arthroplasty (THA). Despite a relatively high incidence, there are few attempts at modelling impingement between the iliopsoas and acetabular component, and no attempts at modelling this in a representative cohort of subjects. The purpose of this study was to develop a novel computational model for quantifying the impingement between the iliopsoas and acetabular component and validate its utility in a case-controlled investigation.

Methods

This was a retrospective cohort study of patients who underwent THA surgery that included 23 symptomatic patients diagnosed with iliopsoas tendonitis, and 23 patients not diagnosed with iliopsoas tendonitis. All patients received postoperative CT imaging, postoperative standing radiography, and had minimum six months’ follow-up. 3D models of each patient’s prosthetic and bony anatomy were generated, landmarked, and simulated in a novel iliopsoas impingement detection model in supine and standing pelvic positions. Logistic regression models were implemented to determine if the probability of pain could be significantly predicted. Receiver operating characteristic curves were generated to determine the model’s sensitivity, specificity, and area under the curve (AUC).


Bone & Joint Open
Vol. 5, Issue 10 | Pages 858 - 867
11 Oct 2024
Yamate S Hamai S Konishi T Nakao Y Kawahara S Hara D Motomura G Nakashima Y

Aims

The aim of this study was to evaluate the suitability of the tapered cone stem in total hip arthroplasty (THA) in patients with excessive femoral anteversion and after femoral osteotomy.

Methods

We included patients who underwent THA using Wagner Cone due to proximal femur anatomical abnormalities between August 2014 and January 2019 at a single institution. We investigated implant survival time using the endpoint of dislocation and revision, and compared the prevalence of prosthetic impingements between the Wagner Cone, a tapered cone stem, and the Taperloc, a tapered wedge stem, through simulation. We also collected Oxford Hip Score (OHS), visual analogue scale (VAS) satisfaction, and VAS pain by postal survey in August 2023 and explored variables associated with those scores.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 57 - 57
1 Jan 2018
Sugano N Hamada H Takao M Sakai T Nakamura N
Full Access

The purposes of this study were to review retrospectively the 10-year outcome of cementless total hip arthroplasty (THA) using an active robot system in the femoral canal preparation for an anatomic short stem and navigation in the cup placement through a mini incision posterior approach. We reviewed all patients who underwent THA with this procedure in 53 hips between 2004 and 2007. There were no intraoperative fracture nor navigation- or robotic-related complications. All implant sizes were same as planned ones. All cases were followed up at least two years and all implants showed bone ingrowth stable according to the Engh's criteria. After then, six patients died of unrelated causes. Two patients (three hips) could not come to the 10-year follow-up examination. The remaining 44 hips were followed for 10 to 12 years (11 years on average). There is no dislocation. The average JOA hip score improved from 48 preoperatively to 96 at the final examination. On the postoperative x-ray measurements, the average cup radiographic inclination was 39° and the radiographic anteversion was 14°. There was no stem which showed more than 2° of varus or valgus alignment. There was no case who showed more than 5mm of limb length discrepancy. Postoperative CT images of 38 hips were obtained at 2 weeks. After matching the coordinates of the pelvis and femur with the preoperative planning, we got very small differences in alignment parameters between the measured values and the planed ones. The difference differences between the plan and measured values were −0.1° in cup inclination, −1.4° in cup anteversion, stem 0.5° in coronal alignment, 0.6° in stem sagittal alignment, and −1.6° in stem anteversion, respectively. We conclude that our robotic femoral preparation for a short anatomical stem and navigated cup placement thru a mini-posterior approach was safe and feasible without affecting the accuracy of the procedure. There were no long term adverse effect of the procedure


Bone & Joint Open
Vol. 4, Issue 6 | Pages 416 - 423
2 Jun 2023
Tung WS Donnelley C Eslam Pour A Tommasini S Wiznia D

Aims

Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model.

Methods

A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 37 - 37
1 Aug 2018
Baek S Lee J Lee YS Kim S
Full Access

We evaluated (1) wear rate, (2) prevalence and volume of osteolysis using 3D-CT scan, (3) other bearing-related complications, (4) HHS and survivorship free from revision at 15 years after THA using first-generation XLPE (1G XLPE). One-hundred sixty THAs were evaluated regarding bearing-related complication, HHS and survivorship. Among them, 112 hips underwent 3D-CT to analyze wear rate and osteolysis. All THAs were performed by single surgeon using cup of identical design, a 28-mm metal head and 1G XLPE (10 Mrad). Average age were 57 years and mean follow-up was 15.2 years. 3D-CT scan was performed at average of 13.0 years. Clinical evaluation included HHS and radiographic analysis was performed regarding stem alignment, cup anteversion and inclination angle, component stability, wear rate and osteolysis. Wear was measured using digital software. The prevalence and volume of osteolysis were also evaluated. Complications included XLPE dissociation/rim fracture, dislocation, periprosthetic fracture, infection, HO and any revision. Survivorship free from revision at 15 years was estimated. Average inclination and anteversion angle of cups were 40.7° and 20.6°. Mean stem alignment was 0.1° valgus. Average bedding-in and annual wear rate wear rate was 0.085 mm and 0.025 mm/yr. Eleven hips (10%) demonstrated osteolysis; pelvic osteolysis with average volume of 1.4 cm. 3. in six and femoral osteolysis with mean size of 0.4 cm. 2. in seven hips. Of 160 THAs, 5 hips (3%) dislocated. Overall, bearing-related complications occurred in 16 hips (10%). Other complications included postoperative periprosthetic fracture in 4 (3%), infection and HO in 3 hips, respectively. No hip demonstrated loosening, XLPE rim fracture/dissociation. Seven THAs (4%) were revised; recurrent dislocation in 5 and periprosthetic joint infection in 2 hips. Average HHS at last follow-up improved from 47.7 preoperatively to 91.2 points (p<0.001). Estimated survivorship free from revision at 15 years was 95.6 %. THA using 1G XLPE demonstrated low wear rate as well as low incidence of osteolysis at average follow-up of fifteen years. Longer-term studies will be necessary to determine if XLPE will continue to demonstrate this improved osteolysis characteristics


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 26 - 26
1 Jan 2018
MacDonald S Howard J Goyal P Yuan X Lanting B Teeter M Naudie D McCalden R
Full Access

Lewinnek's safe zone recommendation to minimise dislocations was a target of 5–25° for anteversion angle and 30–50° for inclination angle. Subsequently, it was demonstrated that mal-positioning of the acetabular cup can also lead to edge loading, liner fracture, and greater conventional polyethylene wear. The purpose of this study was to measure the effect of acetabular cup position on highly crosslinked polyethylene wear in total hip arthroplasty (THA) at long-term follow-up. We identified all patients that underwent primary THA with a minimum of 10 years follow-up using an institutional database in London, Ontario, Canada. Patients with a single implant design consisting of a 28 mm cobalt chromium head and highly crosslinked polyethylene liner (ram extruded, GUR 1050, 100 kGy gamma irradiated, remelted, ethylene oxide sterilised) were selected for inclusion. In total, 85 hips from 79 recruited patients were analysed. Patients underwent a supine radiostereometric analysis (RSA) exam in which the x-ray sources and detectors were positioned to obtain an anterior-posterior and cross-table lateral radiograph. Acetabular cup anteversion angle, inclination angle, and 3D penetration rate (including wear and creep) were measured from the stereo radiograph pairs. At a mean follow-up of 13 years (range, 10–17 years) the mean penetration rate was 0.059 mm/year (95% CI: 0.045 to 0.073 mm/year). Mean anteversion angle was 18.2° (range, −14 to 40°) and mean inclination angle was 43.6° (range, 27 to 61°). With respect to the Lewinnek safe zone, 67% hips met the target for anteversion angle, 77% met the target for inclination angle, and 51% met the target for both. There was no correlation between anteversion angle and penetration rate (r = −0.14, p = 0.72) or between inclination angle and penetration rate (r = 0.11, p = 0.35). There was also no difference (p = 0.07) in penetration rate between hips located within the Lewinnek safe zone for both anteversion angle and inclination angle (mean 0.057 mm/year, 95% CI: 0.036 to 0.079 mm/year) and those outside the safe zone (mean 0.062 mm/year, 95% CI: 0.042 to 0.083 mm/year). Acetabular cup position had no effect on the wear rate of highly crosslinked polyethylene at long-term follow-up. Although care should still be taken to correctly position the acetabular cup for stability, highly crosslinked polyethylene is a forgiving bearing material that can withstand a wide range of cup positions without negatively impacting longevity due to wear


Bone & Joint Open
Vol. 3, Issue 6 | Pages 475 - 484
13 Jun 2022
Jang SJ Vigdorchik JM Windsor EW Schwarzkopf R Mayman DJ Sculco PK

Aims

Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error.

Methods

A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Δsacral slope(SS)stand-sit > 30°), or stiff (SSstand-sit < 10°) spinopelvic mobility contributed to increased error rates.


Bone & Joint Open
Vol. 5, Issue 8 | Pages 671 - 680
14 Aug 2024
Fontalis A Zhao B Putzeys P Mancino F Zhang S Vanspauwen T Glod F Plastow R Mazomenos E Haddad FS

Aims

Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement.

Methods

This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 898 - 906
1 Sep 2024
Kayani B Wazir MUK Mancino F Plastow R Haddad FS

Aims

The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system.

Methods

This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.


Bone & Joint Open
Vol. 3, Issue 1 | Pages 4 - 11
3 Jan 2022
Argyrou C Tzefronis D Sarantis M Kateros K Poultsides L Macheras GA

Aims

There is evidence that morbidly obese patients have more intra- and postoperative complications and poorer outcomes when undergoing total hip arthroplasty (THA) with the direct anterior approach (DAA). The aim of this study was to determine the efficacy of DAA for THA, and compare the complications and outcomes of morbidly obese patients with nonobese patients.

Methods

Morbidly obese patients (n = 86), with BMI ≥ 40 kg/m2 who underwent DAA THA at our institution between September 2010 and December 2017, were matched to 172 patients with BMI < 30 kg/m2. Data regarding demographics, set-up and operating time, blood loss, radiological assessment, Harris Hip Score (HHS), International Hip Outcome Tool (12-items), reoperation rate, and complications at two years postoperatively were retrospectively analyzed.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims

Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions.

Methods

A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.