The posterior tibial slope angle (PTS) in posterior cruciate retaining total knee arthroplasty influences the knee kinematics, knee stability, flexion gap, knee range of motion (ROM) and the tension of the posterior cruciate ligament (PCL). The current technique of using an arbitrary (often 3–5 degrees) PTS in all cases seldom will restore native slope in cruciate retaining TKA. Questions/Purposes: The primary objective was to determine if we could surgically reproduce the native PTS in
Introduction. Although total knee arthroplasty (TKA) is generally considered successful, 16–30% of patients are dissatisfied. There are multiple reasons for this, but some of the most frequent reasons for revision are instability and joint stiffness. A possible explanation for this is that the implant alignment is not optimized to ensure joint stability in the individual patient. In this work, we used an artificial neural network (ANN) to learn the relation between a given standard
Background. The constraint of total knee replacement (TKR) implants is not simply defined and many of the factors that influence it are not well understood. Variability in the constraint of different TKR implants designed for the same indication (e.g.
Background. To prevent excessive tension on the posterior cruciate ligament (PCL) in
INTRODUCTION. The medial-stabilised (MS) knee implant, characterised by a spherical medial condyle on the femoral component and a medially congruent tibial bearing, was developed to improve knee kinematics and stability relative to performance obtained in posterior-stabilised (PS) and
Introduction. Tibial slope was shown to majorly affect the outcomes of Total Knee Arthroplasty (TKA). More slope of the tibial component could help releasing a too tight flexion gap in
INTRODUCTION:. A discrepancy exists between biomechanical and clinical outcome studies when comparing
Background. In recent literatures, medial instability after TKA was reported to deteriorate early postoperative pain relief and have negative effects on functional outcome. Furthermore, lateral laxity of the knee is physiological, necessary for medial pivot knee kinematics, and important for postoperative knee flexion angle after
Introduction. Controversy still exists as to whether total knee arthroplasty (TKA) provides reproducible knee kinematics during activities. In this study, we evaluated the in vivokinematics of stair-climbing after TKA using a 3D-to-2D model-to-image registration technique. Patients and Methods. A total of twenty four knees in nineteen patients following
Introduction / Purpose. Many factors can influence postoperative knee flexion angle after total knee arthroplasty (TKA), and range of flexion is one of the most important clinical outcomes. Although many studies have reported that postoperative knee flexion is influenced by preoperative clinical conditions, the factors which affect postoperative knee flexion angle have not been fully elucidated. As appropriate soft-tissue balancing as well as accurate bony cuts and implantation has traditionally been the focus of TKA success, in this study, we tried to investigate the influence of intraoperative soft-tissue balance on postoperative knee flexion angle after
Purpose. The purpose of this study was to compare joint line changes between posterior-stabilized (PS) and
It is a well-known fact that total knee arthroplasty is a soft tissue operation. Soft tissue balancing is the key to success in total knee arthroplasty. It is paramount importance to preserve the maximal amount of bone on both the femur and tibial side. In Indian scenario, majority of the patients present relatively late with varus or valgus deformity. Adding to this problem is poor bone quality due to osteoporosis. Our technique of Posterior cruciate ligament (PCL) retaining TKA with tibial end plate resection facilitates soft tissue balancing, preserves PCL and maximizes bone preservation on both tibial and femoral side achieving good results in minimum seven year follow up. We retrospectively analyzed seven year outcomes of 120 knees (110 patients), mean age was 65 years (range 55 to 75 years), who received contemporary
Purpose. Surgeons sometimes encounter moderate or severe varus deformed osteoarthritic cases in which medial substantial release including semimembranosus is compelled to appropriately balance soft tissues in total knee arthroplasty (TKA). However, medial stability after TKA is important for acquisition of proper knee kinematics to lead to medial pivot motion during knee flexion. The purpose of the present study is to prove the hypothesis that step by step medial release, especially semimembranosus release, reduces medial stability in
Purpose. The purpose of this study was to analyze rotational kinematic patterns in knees treated with either
Although the pre- or intraoperative flexion angle in TKA has been commonly considered as a predictor of the postoperative flexion angle, patients with well flexion intraoperatively cannot necessarily obtain deep flexion angle postoperatively. The reason why inconsistencies remains has been unsolved. The intraoperative compressive force between femoral and tibial components has the advantage of the sequential changes during knee motion. However, the relationship between the compressive force and the postoperative ROM has not yet been clarified. We aimed to evaluate the intraoperative femorotibial compressive force during passive knee motion, and determine the relationship between the compressive force and the postoperative flexion angle. A total of 11 knees in 10 patients who underwent primary
Introduction. Appropriate intraoperative soft tissue balancing is recognized to be essential in total knee arthroplasty (TKA). However, it has been rarely reported whether intraoperative soft tissue balance reflects postoperative outcomes. In this study, we therefore assessed the relationship between the intra-operative soft tissue balance measurements and the post-operative stress radiographs at a minimum 1-year follow-up in
A bicruciate retaining (BCR) TKA is thought to maintain a closer resemblance to the native knee kinematics compared to a posterior cruciate retaining (CR) TKA. With BCR TKAs retainment of the anterior cruciate ligament (ACL) facilitates proprioception and balance which is thought to lead to more natural knee kinematics and increased functional outcome. The aim of this study was to quantify and compare the kinematics of a BCR and CR TKA during functional tests. In this patient-blinded randomized controlled trial, a total of 40 patients with knee osteoarthritis were included, 18 of them received a BCR TKA (Vanguard XP, Zimmer-Biomet) and 22 received a CR TKA (Vanguard CR, Zimmer-Biomet). Fluoroscopic analysis was done 1 year post-operatively. The main outcome was posterior femoral rollback (i.e. translation of the femorotibial contact point (CP)) of the BCR and CR TKA during a step-up test. Secondary, the kinematics during a lunge test were quantified as anterior-posterior (AP) translation of the femorotibial CP. Independent student t-tests (or non-parametric equivalent) were used to analyze the effect of BCR versus CR TKA on these measures, to correct for the multiple testing problem post-hoc Bonferroni-Holm corrections were applied.Introduction
Materials and Methods
Introduction. An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a
Introduction. Total knee arthroplasty (TKA) with a computer-assisted navigation system has been developed to improve the accuracy of the alignment of osteotomies and implantations. One of the most important goals of TKA is to improve the flexion angle. Although accurate soft tissue balancing has been recognized as an essential surgical intervention influencing flexion angle, the direct relationship between post-operative flexion angle and intra-operative soft tissue balance during TKA, has little been clarified. In the present study, therefore, we focused on the relationship between them in
Initial stability of cementless total knee arthroplasty (TKA) tibial trays is necessary to facilitate biological fixation. Previous experimental and computational studies describe a dynamic loading micromotion test used to evaluate the initial stability of a design. Experimental tests were focused on cruciate retaining (CR) designs and walking gait loading. A FEA computational study of various constraints and activities found CR designs during walking gait experienced the greatest micromotion. This experimental study is a continuation of testing performed on CR and walking gait to include a PS design and stair descent activity. The previously described experimental method employed robotic loading informed by a custom computational model of the knee. Different TKA designs were virtually implanted into a specimen specific model of the knee. Activities were simulated using in-vivo loading profiles from instrumented tibia implants. The calculated loads on the tibia were applied in a robotic test. Anatomically designed cementless tibia components were implanted into a bone surrogate. Micromotion of the tray relative to the bone was measured using digital image correlation at 10 locations around the tray. Three PS and three CR samples were dynamically loaded with their respective femur components with force and moment profiles simulating walking gait and stair descent activities. Periods of walking and stair descent cycles were alternated for a total of 2500 walking cycles and 180 stair descent cycles. Micromotion data was collected intermittently throughout the test and the overall 3D motion during a particular cycle calculated. The data was normalized to the maximum micromotion value measured throughout the test. The experimental data was evaluated against previously reported computational finite element model of the micromotion test.Introduction
Methods