As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel
As arthroplasty demand grows worldwide, the need for a novel cost-effective treatment option for articular cartilage (AC) defects tailored to individual patients has never been greater. 3D bioprinting can deposit patient cells and other biomaterials in user-defined patterns to build tissue constructs from the “bottom-up,” potentially offering a new treatment for AC defects. The aim of this research was to create bioinks that can be injected or 3D bioprinted to aid osteochondral defect repair using human cells. Novel
Abstract. INTRODUCTION. Polyetheretherketone (PEEK) is a high-performance thermoplastic polymer which has found increasing application in orthopaedic implant devices and has a lot of promise for ‘made-to-measure’ implants produced through additive manufacturing [1]. However, a key limitation of PEEK is that it is bioinert and there is a requirement to functionalise its surface to make the material osteoconductive to ensure a more rapid, improved and stable fixation, in vivo. One approach to solving this issue is to modify PEEK with bioactive materials, such as hydroxyapatite (HA). OBJECTIVE. To 3D PEEK/HA
To prevent the reported side effects of rhBMP-2, an important cytokine with bone forming capacity, the sustained release of rhBMP-2 is highly important. Synthetic copolymer polylactic acid-polyethylene glycol (PLA-PEG) is already shown to be a good carrier for rhBMP-2. The nano-sized hydroxyapatite (nHAp) is mentioned to be superior to conventional hydroxyapatite due to its decreased particle size which increases the surface area, so protein-cell adhesion and mechanical properties concomitantly. In the literature no study is reported with PLA-PEG / rhBMP-2/ nHAp for bone regeneration. In this study, we assessed the controlled release profile of rhBMP-2 from the novel biomaterial of PLA-PEG / rhBMP-2 / nHAp in vitro and evaluated the bone forming capacity of the
Critical-sized bone defects remain challenging in the clinical setting. Autologous bone grafting remains preferred by clinicians. However, the use of autologous tissue is associated with donor-site morbidity and limited accessibility to the graft tissue. Advances in the development of synthetic bone substitutes focus on improving their osteoinductive properties. Whereas osteoinductivity has been demonstrated with ceramics, it is still a challenge in case of polymeric
Medical grade polyurethanes have been widely promoted for biomedical applications. In particular, the use of polycarbonate-urethanes (PCU) has drawn considerable attention in the orthopaedic device industry as a result of their excellent mechanical properties, biostability and biocompatibility. PCUs have been extensively utilized in vascular grafts, stents and artificial heart valves. Specifically, bionate thermoplastic PCU, commercially produced by DSM PTG (Berkeley, California), has been of great interest in the field of orthopaedics because of its outstanding load-bearing properties and excellent wear resistance. Also, it is characterized by its long-term durability and resistance to hydrolytic degradation making it a good candidate for in-vivo orthopaedic applications. PCUs have been considered for meniscal replacement because of its unique weight-bearing capabilities, ability to withstand intense forces within the knee joint and ease of lubrication due to its hydrophilic nature. In addition, the low frictional properties essential for a meniscal replacement is obtainable with PCUs. Materials used for this study were a commercial polycarbonate-urethanes, Bionate PCU 80A (B8) and 90A (B9) pellets, and polyethylene continuous strands fibres (PE) obtained from DSM Polymer Technology Group, USA. Some quantity of the B8 and B9 pellets were dried separately in a vacuum oven at 100°C for 14 hours. A custom mould was designed for the production of the mechanical test samples. The quantity of the constituent materials was determined using
Calcium phosphate ceramics and bioactive glasses are frequently used in orthopedic surgery to stimulate the regeneration of bone tissue due to their superior compatibility to bone tissue. Nevertheless, the brittleness and lack of self-healing behavior of bioceramics are still considered as serious drawbacks. Therefore, these bioceramics have been combined with organic biomaterials for several decades. Since the 1990s, the emergence of nanotechnology has accelerated the progress with respect to the development of organic-inorganic nanocomposites of improved functionality compared to conventional
Sustained release of BMP-2 is reported to be able to reduce the required dose of BMP-2 for bone induction. Nanohydroxyapatite (nHAp) has an osteoinduction capability which is lack in conventional hydroxyapatite. In this study, we combined PLA-PEG with nHAp and investigated the bone regenerative capacity of the newly established
Abstract. Objectives. Direct ink writing (DIW) has gained considerable attention in production of personalized medical implants. Laponite nanoclay is added in polycaprolactone (PCL) to improve printability and bioactivity for bone implants. The 3D structure of DIW printed PCL/Laponite products was qualitatively evaluated using micro-CT. Methods. PCL/LP
The aim of this study was to evaluate the trochlear bone and cartilaginous regeneration of rabbits using a
Objectives. The major problem with repair of an articular cartilage injury
is the extensive difference in the structure and function of regenerated,
compared with normal cartilage. Our work investigates the feasibility
of repairing articular osteochondral defects in the canine knee
joint using a
Wear particles produced by alumina ceramic-on-ceramic (CoC) bearings cause a minimal immunological response with low cytotoxicity and inflammatory potential. 1, 2. However, more comprehensive immunological studies are yet to be completed for the
Introduction and Objective. Despite pure alumina have shown excellent long-term results in patients undergoing total hip arthroplasty (THA), alumina matrix
The efficacy of saline irrigation for the treatment of periprosthetic infection (PJI) is limited in the presence of infected implants. This study evaluated the efficacy of vancomycin/tobramycin-doped polyvinyl alcohol (PVA)/ceramic
Abstract. Objective. To compare the periprosthetic fracture mechanics between a collared and collarless fully coated cementless femoral stem in a
Current strategy for orthopedic tissue engineering mainly focusses on the regeneration of the damaged tissue using cell-seeded three-dimensional scaffolds. Biocompatible scaffolds with controllable degradation and suitable mechanical property are required to support new tissue in-growth and regeneration . [1]. Porous
Worldwide 500,000 cases of maxillofacial cancer are diagnosed each year. After surgery, the reconstruction of large bone defect is often required. The induced membrane approach (Masquelet, 2000) is one of the strategies, but exhibits limitations in an oncological context (use of autografts with or without autologous cells and Bone Morphogenetic Proteins). The objectives of this work are to develop an injectable osteoinductive and osteoconductive
We describe a case series using calcium sulphate bio
Collagen and hyaluronic acid are two major components of intervertebral disc (IVD). They give resistance and hydration to Nucleus Pulposus. In this study, we assessed the impact of Collagen (COLL) and Hyaluronic acid-Tyramine (THA) contents on the mechanical properties and the structure of
First works focuses on the characterization (physical and biological) of this biomaterial. Current work had studied osteoinductive and osteoconductive capacity of these hydrogels. In vivoresults highlight a significant bone reconstruction two months after implantations on bone lesions in mice. Bone is a dynamic and vascularized tissue that has the ability of naturally healing upon damage. Nevertheless, in the case of critical size defects this potential is impaired. Present approaches mainly consider autografts and allografts, which presents several limitations. Bone Tissue Engineering (BTE) is based on the use of 3D matrices to guide both cellular growth, differentiation to promote bone regeneration. Hence, matrices can contain biological materials such as cells and growth factors. Our project aims to design a hydrogel for BTE, particularly for bone lesion filling. We previously showed that a porous 3D hydrogel, Glycosyl-Nucleoside-Fluorinated (GNF) is: 1) non-cytotoxic to clustered human Adipose Mesenchymal Stem Cells (hASCs), 2) bioinjectable and 3) biodegradable. Therefore, this novel class of hydrogels show promise for the development of therapeutic solutions for BTE [1]. The hypothesis of this research was that improving the capacity to promote the adhesion of cells by adding collagen gel matrices and bone morphogenic protein 2 (BMP-2) to improve the bone regenerative potential of this gel. Collagen is a protein matrix well known for its cytocompatibility [2]. BMP-2, have been shown ability to induce bone formation in combination with an adequate matrix [3]. Thereby, the overall aim of this work was to design, develop and validate a new