Diagnosis of
There are two types of pain, mechanical and non-mechanical. Mechanical pain hurts with movement/use, is not constant and is helped by morphine-type products. Non-mechanical pain is different. It is present 24 hours a day, often worse at night, and except for the pain of infection, is not relieved by morphine-type products. If the cause of mechanical pain can be determined, it can be corrected by an operation. The usual cause of postoperative mechanical knee pain nowadays is multifactorial, i.e. a combination of minor errors, none of which on their own would require revision. Non-mechanical pain, other than infection, is much more difficult to handle. The commonest cause is not really a pain complaint, it is disappointment due to a failure of expectation. It does not matter how often you tell patients, some patients still think they should step in a drive away. A lot of these failures of expectations become much more realistic by the end of year one. There are several other categories. Incipient osteoarthritis or sensitive people (The Princess and the Pea). If the pain complaints were severe with minimal arthritis, an operation is not likely to help. The patient on disability for no clear reason is unlikely to get a good result and Workmen's Compensation Board and motor vehicle accident patients are also a very bad prognostic sign and will often produce the postoperative painful knee. Preoperative use of large doses of morphine is also a very bad sign. It is not clear if it is the morphine, which influences the patient or the patient, who influences the morphine. There are several pain syndromes, some of which are purely psychiatric such as Conversion Disorders and Somatoform Pain Disorders. Treatment of purely psychiatric conditions should be a referral to a psychiatrist is in order.
In years past, the most common reason for revision following knee replacement was polyethylene wear. A more recent study indicates that polyethylene wear is relatively uncommon as a cause for total knee revision counting for only 10% or fewer of revisions. The most common reason for revision currently is aseptic loosening followed closely by instability and infection. The time to revision was surprisingly short. In a recent series only 30% of knees were greater than 5 years from surgery at the time of revision. The most common time interval was less than 2 years. This is likely because of the higher incidence of infection and instability that occurs most commonly at a relatively early time frame. Evaluation of a painful total knee should take into account these findings. All total knees that are painful within 5 years of surgery should be assumed to be infected until proven otherwise. Therefore, virtually all should be aspirated for cell count, differential, and culture. Alpha-defensin is also available in cases in which a patient may have been on antibiotics within a month or less, as well as cases in which diagnosis is a challenge for some reason. Instability can be diagnosed with physical exam focusing on mid-flexion instability which can be usually determined with the patient seated and the knee in mid-flexion, with the foot flat on the floor at which point sagittal plane laxity can be discerned. This is also frequently associated with symptoms of giving way and recurring effusions and difficulty descending stairs. A new phenomenon of tibial de-bonding has been described, which can be a challenge to diagnose. Radiographs can appear normal when loosening occurs between the implant and the cement mantle. This seems to be more common with the use of higher viscosity cement. Obviously this is technique dependent since good results have been reported with the use of high viscosity cement. Component malposition can cause stiffness and pain and relatively good results have been reported by component revision when malrotation has been confirmed with CT scan. When infection, instability and loosening are not present, extra-articular causes should be ruled out including lumbar spine, vascular compromise,
Stiffness after TKR is a frustrating complication that has many possible causes. Though the definition of stiffness has changed over the years, most would agree that flexion > 75 degrees and a 15-degree lack of extension constitutes stiffness. This presentation will focus upon the potential causes of a stiff TKR, intra-operative tips, the post-operative evaluation and management, and the results of revision for a stiff TKR. The management of this potentially unsatisfying situation begins pre-operatively with guidance of the patient's expectations; it is well-known that pre-operative stiffness is strongly correlated with post-operative lack of motion. At the time of surgery, osteophytes must be removed and the components properly sised and aligned and rotated. Soft-tissue balancing must be attained in both the flexion/extension and varus/valgus planes. One must avoid overstuffing the tibio-femoral and/or patello-femoral compartments with an inadequate bone resection. Despite these surgical measures and adequate pain control and rehabilitation, certain patients will continue to frustrate our best efforts. These patients likely have a biological predisposition for formation of scar tissue. Other potential causes for the stiff TKR include
Clinical nerve injury has been reported in 0.6–4.8% of shoulder arthroplasties. Classical teaching is that 70–85% of injuries recover. Despite recovery of motor function, overall shoulder function may be negatively affected and residual pain is common.
Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set. A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy.Aims
Methods
Stiffness after total knee arthroplasty (TKA) is a common problem occurring between 5% and 30% of patients. Stiffness is defined as limited range of motion (ROM) that affects activities of daily living. A recent International Consensus on definition of stiffness of the knee graded stiffness as mild, moderate or severe (90–100, 70–89, <70, respectively) or an extension deficit (5–10, 11–20, >20). Stiffness can be secondary to an osseous, soft tissue, or prosthetic block to motion. Heterotopic bone or retained posterior osteophytes, abundant fibrotic tissue, oversized components with tight flexion or extension gaps or component malrotation can all limit knee motion. Infection should always be considered in the knee that gradually loses motion. Alternative causes include
Introduction. Bone loss in the distal femur and proximal tibia is frequently encountered with both complex primary and revision knee replacement surgery. Metaphyseal sleeves provide a good option for enhanced fixation in managing such defects on both the tibia and femur. We present our results in 48 patients (50 knees) with a minimum 12 month follow up (range 12 to 45). Methods. 48 patients (50 knees) who had revision knee arthroplasty for either septic or aseptic loosening. All were graded Type II or III using the Anderson Orthopaedic Research Institute (AORI) grading system of both femoral and tibial defects. A large portion of aseptic loosening revisions were for extreme osteolysis of a bicondylar knee prosthesis. Results. 52% had tibial sleeves only, 38% had both tibial and femoral sleeves and the remainder had only femoral sleeves inserted. All knee radiographs at final follow-up showed well-fixed osteointegrated components without component migration or clinically significant osteolysis. Two knees were treated with multiple arthroscopic washouts for infection. Two knees subsequently underwent manipulation under anaesthesia with good improvement in range of movement. One subsequently developed
The causes of pain after TKA can be local (intra or extra-articular) or referred from a remote source. Local intra-articular causes include prosthetic loosening, infection, aseptic synovitis (wear debris, hemarthrosis, instability, allergy), impingement (bone soft tissue or prosthetic), an un-resurfaced patella and stress fracture of bone or the prosthesis. Some surgeons think that isolated component mal-rotation can be a source of pain, but component mal-rotation is rarely present in the absence of other technical abnormalities. Local extra-articular causes include pes anserine bursitis, saphenous neuroma/dysasthesias, post-tourniquet dysasthesias,
Persistent post-surgical pain remains a problem after knee replacement with some studies reporting up to 20% incidence. Pain is usually felt by those who do not operate to be a monolithic entity. All orthopaedic surgeons know that this is not the case. At its most basic level, pain can be divided into two categories, mechanical and non-mechanical. Mechanical pain is like the pain of a fresh fracture. If the patient does not move, the pain is less. This type of pain is relieved by opiates. Mechanical pain is seen following knee replacement, but is fortunately becoming less frequent. It is caused by a combination of malrotations and maltranslations, often minor, which on their own would not produce problems. The combination of them, however, may produce a knee in which there is overload of the extensor mechanism or of the medial stabilizing structures. If these minor mechanical problems can be identified, then corrective surgery will help. Non-mechanical pain is present on a constant basis. It is not significantly worsened by activities. Opiates may make the patient feel better, but they do not change the essential nature of the pain. Non-mechanical pain falls into three broad groups, infection, neuropathic and perceived pain. Infection pain is usually relieved by opiates. Since some of this pain is probably due to pressure, its inclusion in the non-mechanical pain group is questionable, but it is better left there so that the surgeon always considers it. Low grade chronic infection can be extremely difficult to diagnose. Loosening of noncemented knee components is so rare that when it is noted radiologically, infection should be very high on the list of suspicions. The name neuropathic pain suggests that we know much more about it than we do in reality. Causalgia or CRPS-type two is rare following knee replacement. CRPS type one or
Background. Nonsurgical treatment of Acromioclavicular joint dislocations is well established. Most patients treated conservatively do well, however, some of them develop persistent symptoms. We have used two different surgical reconstruction techniques for Chronic ACJ dislocation stabilization. The study evaluates the effectiveness of a braided polyester prosthetic ligament and modified Weaver-Dunn reconstruction methods. Methods. 55 patients (mean age 42) with Chronic Acromioclavicular joint dislocation were included in this study. They were treated either by a modified Weaver-Dunn method or a braided polyester prosthetic ligament. Patients were assessed using Oxford shoulder score preoperatively and a minimum of 12 months postoperatively. Results. 31 patients (mean age 40, M=24, F=7) were treated by Modified WD method and 24 patients (mean age 44, M=18, F=6) by Surgilig at a mean21 and 24 months post injury. The mode of injury, presentation of symptoms, grade of injury and mean time at surgery post injury was similar in both the groups. There was a significant improvement (p<0.05) in mean pre and postoperative Oxford Shoulder score in both the groups (WD Mean preop OSS=28, postop OSS= 42, Surgilig Mean preop OSS=26, postop OSS=45). The Surgilig group returned to work significantly earlier (Surgilig; mean 6 wks, WD mean 14 wks). There were 3 failures in the WD group and 1 in Surgilig. Superficial infection was seen in 3 patients requiring antibiotics only. Most of the patients from both groups were satisfied with their result except for 3 patients, one which developed
Aim. Fixation of distal radial fractures via the volar approach has become a commonly performed procedure over the past few years. This study is to highlight potential pitfalls with this ‘everyday’ procedure and to perhaps temper over-enthusiasm for plating all wrist fractures. Method and materials. 164 consecutive cases of wrist fracture treated by means of fixed angle volar fixation were looked at. In each case any recorded complication prior to completion of treatment was documented. The complications were divided into major and minor depending on the severity and long-term outcome and overall result. Results. With critical analysis there were 32 major complications: 12 required further surgery; 1 iatrogenic radial artery injury; 1 iatrogenic palmar branch of median nerve injury; 2
Pigmented villonodular synovitis is a monoarticular proliferative process most commonly involving the synovium of the knee joint. There is considerable debate with regards to diagnosis and effective treatment. We present our experience of managing PVNS of the knee joint over a 12 year period. Twenty-eight patients were reviewed. MRI was used to establish recurrence in symptomatic patients rather than routine screening and to identify posterior disease prior to surgery. Eight patients had localised disease and were all treated with open synovectomy and excision of the lesion, with no evidence of recurrence. Twenty patients had diffuse disease, eight treated arthroscopically and twelve with open total synovectomy. Nineteen patients (95%) had recurrence on MRI, however, only five (25%) had evidence of clinical recurrence. There were no significant complications following arthroscopic synovectomy. Open synovectomy, in contrast, was associated with three wound infections and two thrombo-embolisms. Three patients had
Introduction. Extensor digitorum brevis (EDB) transfer is a useful method for treating chronic ankle instability in selected patients. It adds strength to the anterolateral capsule and provides proprioceptive feedback to functionally unstable ankles. Method. A single surgeon of case series of patients undergoing EDB transfer for chronic ankle instability following sporting injuries between January 2003 and July 2011 was reviewed. All patients underwent arthroscopic procedures in a day case setting. Outcomes were measured using return to sporting activity and the Karlsson functional scoring system. Results. 67 patients underwent unilateral EDB transfer over the 102 month period. 49 patients were male and all patients were aged less than 45. Minimum follow up was 6 months and all patients were discharged by 15 months (median follow up 9 months). Post operative assessment demonstrated normal range of ankle movements in all cases. At 6 months all patients had returned to sporting activity, achieving pre injury activity by 9 months. Karlsson scores were above 85.3 minor complications were seen - a superficial wound infection, limited paraesthesia of a branch of the superficial peroneal nerve and a case of
Persistent post-surgical pain (PPSP) remains a problem after knee replacement with some studies reporting up to 20% incidence. Pain is usually felt by those who do not operate to be a monolithic entity. All orthopaedic surgeons know that this is not the case. At its most basic level, pain can be divided into two categories, mechanical and non-mechanical. Mechanical pain is like the pain of a fresh fracture. If the patient does not move, the pain is less. This type of pain is relieved by opiates. Mechanical pain is seen following knee replacement, but is becoming less frequent. It is caused by a combination of malrotations and maltranslations, often minor, which on their own would not produce problems. The combination of them, however, may produce a knee in which there is overload of the extensor mechanism or of the medial stabilizing structures. If these minor mechanical problems can be identified, then corrective surgery will help. Non-mechanical pain is present on a constant basis. It is not significantly worsened by activities. Opiates may make the patient feel better, but they do not change the essential nature of the pain. Non-mechanical pain falls into three broad groups, infection, neuropathic and perceived pain. Infection pain is usually relieved by opiates. Since some of this pain is probably due to pressure, its inclusion in the non-mechanical pain group is questionable, but it is better left there so that the surgeon always considers it. Low grade chronic infection can be extremely difficult to diagnose. Loosening of noncemented knee components is so rare that when it is noted radiologically, infection should be very high on the list of suspicions. The name neuropathic pain suggests that we know much more about it than we do in reality. Causalgia or CRPS-type two is rare following knee replacement. CRPS-type one or
Persistent post-surgical pain (PPSP) remains a problem after knee replacement with some studies reporting up to 20% incidence. At its most basic level, pain can be divided into two categories, mechanical and non-mechanical. Mechanical pain is like the pain of a fresh fracture. If the patient does not move, the pain is less. This type of pain is relieved by opiates. Mechanical pain is seen following knee replacement, but is fortunately becoming less frequent. It is caused by a combination of malrotations and maltranslations, often minor, which on their own would not produce problems. The combination of them, however, may produce a knee in which there is overload of the extensor mechanism or of the medial stabilizing structures. If these minor mechanical problems can be identified, then corrective surgery will help. Non-mechanical pain is present on a constant basis. It is not significantly worsened by activities. Opiates may make the patient feel better, but they do not change the essential nature of the pain. Non-mechanical pain falls into three broad groups, infection, neuropathic and perceived pain. Infection pain is usually relieved by opiates. Since some of this pain is probably due to pressure, its inclusion in the non-mechanical pain group is questionable, but it is better left there so that the surgeon always considers it. Low grade chronic infection can be extremely difficult to diagnose. Loosening of noncemented knee components is so rare that when it is noted radiologically, infection should be very high on the list of suspicions. The name neurogenic pain suggests that we know much more about it than we do in reality. Causalgia or CRPS-type two is rare following knee replacement. CRPS type one or