Introduction. Prospective study based on professional sportsmen who affected from Chronicle
Introduction: Suppurative conditions in closed cavities/tunnels require surgical drainage and irrigation for elimination of infection. The purpose of this study is to evaluate the pattern of extension of infections in hand compartments and the necessity for intraoperative and continuous postoperative catheter irrigation. Material and Methods:
Spastic muscles show permanent contraction but also paradoxical muscular weakness.
The results of a cadaver dye-infusion experiment suggested that the hand has ten muscle compartments and that the volar interossei occupy a separate anatomical compartment from the adjacent dorsal interossei. This is not supported by clinical findings. With various minor modifications, we repeated the experiment, infusing Omnipaque into the second dorsal interosseus muscle of four cadaver hands. We used real-time CT imaging to monitor the spread of contrast medium and side-ported needles to measure compartmental pressures. In all four hands, the tissue barrier between dorsal and volar interossei became incompetent at pressures of less than 15 mmHg. Our data indicate that, although cadaver infusion studies can delineate potentially significant musculoskeletal barriers, their physiological relevance must be confirmed clinically.
Soft tissue balancing in total knee arthroplasty surgery may prove necessary to elevate patient satisfaction and functional outcome beyond the current fair average. A new generation of contact load sensors embedded in trial tibial liners provides quantification of loads, direction, and an indirect assessment of ligamentous tension. With this technology, quantified intra-operative balancing may potentially restore compartmental load distribution to a more physiological and functional degree. 1). To define a clinically useful target zone for balancing of the soft tissue envelope of knees at the time of surgery using numerical data from load sensors in tibial liner trial components. 2). To validate the boundaries of the target zone on a medial v. lateral contact load scatterplot with PROMsIntroduction
Objective
Joint registries classify all further arthroplasty procedures to a knee with an existing partial arthroplasty as revision surgery, regardless of the actual procedure performed. Relatively minor procedures, including bearing exchanges, are classified in the same way as major operations requiring augments and stems. A new classification system is proposed to acknowledge and describe the detail of these procedures, which has implications for risk, recovery, and health economics. Classification categories were proposed by a surgical consensus group, then ranked by patients, according to perceived invasiveness and implications for recovery. In round one, 26 revision cases were classified by the consensus group. Results were tested for inter-rater reliability. In round two, four additional cases were added for clarity. Round three repeated the survey one month later, subject to inter- and intrarater reliability testing. In round four, five additional expert partial knee arthroplasty surgeons were asked to classify the 30 cases according to the proposed revision partial knee classification (RPKC) system.Aims
Methods
The MAKO Surgical Rio Robotic Arm utilizes the pre-op CT images to plan positioning of the uni-condylar and patella-femoral components in order to achieve the most desirable kinematics for the knee joint. We hypothesize that the anatomic matching surfaces and the cruciate retaining design of the Restoris knee will best replicate normal knee kinematics. We tested the healthy cadaveric knee versus the MAKO knee and the most common TKR designs in order to evaluate and compare the kinematic properties. Six healthy male left knees were dissected to leave only the knee capsule and the quadriceps tendon intact. The femur and the tibia were cut 20cm from the joint line and potted with cement into a metal housing. The knee was attached to a crouching machine capable of moving the knee joint though its normal human kinematics from extension to maximum flexion, validated in previous studies. Forces applied to the quadriceps tendon allowed the knee to flex and extend physiologically, and springs attached to the posterior were substituted as the hamstrings at a rate of half the force exerted by the quadriceps as shown in the literature. Three dimensional visual targets attached to the bones were tracked by computer software capable of recreating the positions of the bones in any given flexion angle. A cruciate retaining and posterior stabilized TKR design were chosen to represent the TKRs most commonly available in the market today. The intact knee, MAKO implanted knee, CR and PS TKR designs were tested in sequence on the same specimens. The computer software analyzed the normal distance between the bone surfaces and plotted the locations of contact which could then be quantitatively compared for each given scenario [Fig. 1].Introduction
Methods
Bone mineral density (BMD) and bone mineral content (BMC) have not been previously assessed in unicompartmental knee replacement (UKR). We studied the early bone changes beneath the uncemented Oxford medial UKR. Our hypothesis was that this implant should decrease the shear stresses across the bone-implant interface and result in improved BMD and BMC beneath the tibial component. Using the Lunar iDXA and knee specific software we developed 7 regions of interest (ROI) in the proximal tibia and assessed 38 patients with an uncemented Oxford UKR at 2 years. We measured the replaced knee and contralateral unreplaced knee using the same ROI and compared the BMD and BMC. The initial precision study in 20 patients demonstrated high precision in all areas. There were 12 males and 16 females with an average age of 65.8 years (46–84 years). ROI 1 and 2 were beneath the tibial tray and had significantly less BMC (p=0.023 and 0.001) and BMD (p=0.012 and 0.002). ROI 3 was the lateral tibial plateau and this area also had significantly less BMC (p=0.007) and BMD (p=0.0001). ROI 4 and 5 immediately below the tibial keel had no significant change. These changes were independent of gender and age. These results were surprising in that the universal loss of BMC and BMD suggested that bone loading of the proximal tibia was not improved even after a UKR. The better BMD and BMC adjacent to the keel confirms other studies that show improved bone in-growth around keels and pegs in the uncemented tibial component. A prospective longitudinal study has been developed to compare BMD and BMC changes over time to see whether these changes are dynamic.
Healthy cartilage is essential for optimal joint function. Although, articular cartilage defects are highly prevalent in the active population and might hamper joint function, the effect of articular cartilage defects on knee contact forces and pressures is not yet documented. Therefore, the present study compared knee contact forces and pressures between patients with a tibiofemoral cartilage defect and healthy controls. This might provide additional insights in movement adaptations and the role of altered loading in the progression from defect to OA. Experimental gait data was collected in 15 patients with isolated articular cartilage defects (8 medial-affected, 7 lateral-affected) and 19 healthy asymptomatic controls and was processed using a musculoskeletal model to calculate contact forces and pressures. Differences between medial-affected, lateral-affected and controls were evaluated using Kruskal-Wallis tests and individually compared using Mann-Whitney-U tests (alpha <0.05). The lateral-affected group walked significantly slower compared to the healthy controls. No adaptations in the movement pattern that resulted in decreased loading on the injured condyle were observed. Additionally, the location of loading was not significantly affected. The current results suggest that isolated cartilage defects do not induce changes in the knee joint loading pattern. Consequently, the involved condyle will be equally loaded, indicating that a similar amount of force should be distributed over the remaining cartilage surrounding the articular cartilage defect and may cause local degenerative changes in the cartilage. This in combination with inflammatory responses might play a key role in the progression from articular cartilage defect to a more severe OA phenotype.
The effect of calcaneal traction on the compartmental pressure in the legs of five individuals with tibial fractures was studied. Mean resting pressures without traction were found to be 31.9 mmHg for the deep posterior compartment and 27.0 mmHg for the anterior compartment. For each kilogram weight of traction applied the deep posterior pressure rose by 5.7 per cent of the resting value and the anterior pressure by 1.6 per cent. It is suggested that the weight of traction should be only sufficient to render the patient comfortable and maintain alignment of the limb. Excessive traction is likely to increase the risk of compartmental ischaemia. The application of six kilograms of traction would raise the mean resting pressure by 34 per cent from 31.9 to 42.7 mmHg.
Oxford medial uni compartmental knee replacement is a common and widely accepted procedure that relies on accurate positioning and alignment of the implants for optimal outcome and longevity. Posterior slope of the tibial base plate has been shown to be an important factor affecting long term survivorship. The aim of the study was to evaluate whether navigation increased the accuracy of Oxford knee replacements using the posterior slope of the tibial component as an index measure. The posterior slope of tibial trays from 58 sequential Oxford medial unicondylar knee replacements over a two year period was checked on standard lateral x-rays against the recommended range. There were 12 cases in the navigated and 46 in the conventional group across six Orthopaedic firms. The mean posterior slope for navigated and conventional implantations was 4.75 and 3.3 degrees respectively with the difference not being statistically significant. However, when considering the data for low volume surgeons, the mean posterior slope with and without navigation was 4.75 and 1.83 degrees respectively which was significant with a p value of 0.017. Navigation was also found to significantly decrease the chance of implanting the knee with the posterior slope outside the acceptable range (p=0.024). In both analyses the navigated cohort had a narrower data spread and fewer outliers compared to the conventional group. No other factors were found to significantly correlate with the posterior slope. The study suggests that navigation might help low volume surgeons in increasing the accuracy and decreasing the incidence of extreme variations from the desirable range of implant positioning for unicompartmental knee replacements.
The mechanical classical method of knee surgical instrumentation by alignment is based on built-in compromises and is considered insufficient to ensure consistent success. Soft tissue balancing is thus now seen as necessary for optimal functional outcomes and patient satisfaction. (Matsuda 2005, Winemaker 2002). The authors have previously demonstrated that balancing can be achieved through specific strategic moves. In this study, the goal was to determine the efficacy of a given surgical algorithm and to define predictors of improved outcome. The surgical target is equilibrium of contact loads. The mechanical axis remains in neutral, however subtle variation in the joint line obliquity and posterior slope are tolerated within the literature established boundaries of +/− 3 degrees and less than 10 degrees respectively. Data was obtained from 101 consecutive primary procedures from a single surgeon (PAM) using a PCL-retaining device. For all cases the testing methodology consisted of a sag test, heel push, drawer testing at 90 degrees, and varus-valgus laxity testing at 10 degrees of flexion. Instrumented tibial trials were used to measure the contact forces on the lateral and medial sides at 10, 30, 60 and 90 degrees of flexion. Specific releases were identified and noted based on matrix profiling after each test. Re-iteration loops were enacted until balance within 15 lbs. of difference was achieved. The data was expressed as the ratio of medial/total force (total=medial + lateral), with 0.5 being equal lateral and medial forces. This was named the Contact Load Ratio (CLR). The load distribution was expressed as a scatter graph of lateral v. medial compartmental loads (Figure 1)Introduction
Methods
The clinical diagnosis of an acute compartment syndrome is most reliably based on increasing pain and pain on stretching the affected muscle groups. These signs cannot be elicited in the presence of epidural or regional blocks, or if the patient is unconscious. We present a national audit of consultant trauma and orthopaedic surgeons on the use of compartmental pressure monitoring in such patients. The postal questionnaire also asked whether a departmental protocol was in use and whether regional and epidural blocks were withheld in patients at risk of developing an acute compartment syndrome. 17% of consultants had such an agreed protocol, 53% did not have access to a continuous pressure monitoring device, 58% would request for an epidural/regional block to be withheld with only 2% routinely measuring compartment pressures in the presence of such a block. This study highlights a major deficiency in the clinical approach to a relatively common condition that may result in limb and life threatening complications and supports the recommendation for compartmental monitoring equipment to be made available.
Background. Dual compartment knee replacement has been introduced to allow sparing of the cruciate ligaments and lateral compartment and preserve some biomechanics of knee function. Aim. To study the early clinical and radiographic results of this new prosthesis. Method. Patients who underwent dual compartmental knee arthroplasty performed by 2 surgeons over a period of one year were studied prospectively. All subjects in the study had advanced symptomatic osteoarthritis of the medial and patellofemoral joints but had an intact ACL and preserved lateral compartment. All patients received the Journey Deuce Dual