Intra-articular injection is a common way to deliver biologics to joints, but their effectiveness is limited by rapid clearance from the joint space. This barrier can be overcome by genetically modifying cells within the joint such that they produce anti-arthritic gene products endogenously, thereby achieving sustained, therapeutic, intra-articular concentrations of the transgene products without re-dosing. A variety of non-viral and viral vectors have been subjected to preclinical testing to evaluate their suitability for delivering genes to joints. The first transfer of a gene to a human joint used an
We have undertaken a series of clinical trials over the last 20 years to look at different bearing surface combinations in young adults. We continue to follow these patients well beyond the planned duration of the trials and new information is constantly becoming available. The first trial compared ceramic-on-ceramic with ceramic-on-standard-polyethylene. These patients have now been followed for 20 years with significant wear in the polyethylene group but virtually identical revision rates. The second trial ceramic-on-ceramic, cobalt-chrome-on-standard-polyethylene and cobalt-chrome-on-cross-linked-polyethylene. In this group the ceramic-on-ceramic patients have the lowest revision rate; the ceramic-on-polyethylene group demonstrates a lower wear rate than cobalt-chrome-on-polyethylene. The third trial looks at cobalt-chrome versus zirconium on either cross-linked polyethylene or conventional polyethylene. At 10 years there remains no evidence of improved performance from the zirconium surface as compared to cobalt-chrome. The cross-linked polyethylene group is clearly outperforming the conventional polyethylene in terms of wear rate but at 10 years the revision rates remain the same in all groups. Cross liked polyethylene appears to be the major determining factor in prosthetic longevity and appears to be more important than the counter face material.
Mesenchymal Stromal Cells (MSC) have been proposed as a potential therapy for a broad range of diseases including those affecting the musculoskeletal system. MSCs have received market authorization for treatment of graft versus host disease and fistulizing Crohn's disease. In addition, there are clinical trials underway for diseases affecting all organ systems. GMP manufactured cells are required for these clinical trials and suitable facilities with regulatory approval are thus crucial for the translational process. In this presentation I will review the process whereby such a facility has been constructed at NUI Galway and discuss challenges in operations and sustainability. Researchers at REMEDI and spin out company Orbsen Therapeutics are currently involved in 7 clinical trials using MSCs, 4 of which are EU wide consortia funded by the EU Commission. The presentation will also discuss issues such as source of MSCs, cell sorting, use of bioreactors and xeno-free processes.
Lower limb fractures are commonly treated with cast immobilization, and as a main consequence of strict immobilization this typically leads to loss in muscle mass, decrease of bone density and decline in functional abilities. Body-worn sensors are increasingly used to assess outcome in clinical trials by providing objective mobility parameters in a real-world environment. The aim of this study is to investigate the usability aspects and potential changes in mobility parameters in partial-immobilization patients in real-world conditions. Six healthy young males (age 22.2 ± 1.2 years; weight 76.5 ± 6.7 kg, height 185.8 ± 6.1 cm. Mean ± standard deviation) wore a leg cylinder cast with walker boot to immobilize their dominant leg for two consecutive weeks. Subjects were asked to continuously wear a tri-axial accelerometer on the waist (actibelt) during waking hours for 6 weeks including 2 weeks before, during and after cast immobilisation. The total amount of days of continuous recording was 339 days with a total wearing time of 120 days. Software packages which allow to detect steps and to estimate real-world walking speed were used to analyse the accelerometry data. It was suspected that knee immobilization would affect strongly the wave form of the signal with an impact on the accuracy of the speed algorithm, whereas the step detection should be more robust. This effect was confirmed in a preliminary study performed to quantify the accuracy under immobilization conditions. On the other hand, step numbers are known to be sensitive to fluctuations in wearing time which was not uniform throughout the entire study. We concluded that in this setting step frequency is the most reliable parameter. Step frequency showed a systematic decrease in the values during the immobilization period which recovered to pre-immobilisation values after cast removal. This confirms the usability of accelerometry and sensitivity of its mobility parameters for clinical outcome assessment.
Abstract. Objectives. To compare the effectiveness of phonophoresis (PH) and conventional therapeutic ultrasound (US) on the functional and pain outcomes of patients with knee osteoarthritis. Methods. We conducted an electronic search through PubMed, Cochrane Central Register of
BACKGROUND. Diffuse noxious inhibitory control (DNIC) is impaired in people with chronic pain such as knee osteoarthritis (KOA), which may predict the risk of acute-to-chronic pain transition. Electroacupuncture (EA) is effective in relieving pain in patients with KOA. However, whether EA may inhibit acute-to-chronic pain transition of KOA has not been systematically examined. METHODS. This was a multicenter, three-arm parallel, single-blind randomized controlled trial involving a total of 450 patients with KOA. This study was approved by the Chinese Ethics Committee of Registering