Photobiomodulation (PBM), the use of light for regenerative purposes, has a long history with first documentations several thousand years ago in ancient Egypt and a Nobel Price on this topic at the beginning of last century (by Niels Finsen). Nowadays, it is in clinical use for indications such as wound healing, pain relief and anti-inflammatory treatment. Given the rising numbers of in vitro studies, there is increasing evidence for the underlying mechanisms such as wavelength dependent reactive oxygen production and adenosine triphosphate generation. In cartilage regeneration, the use of PBM is controversially discussed with divergent results in clinics and insufficient in vitro studies. As non-invasive therapy, PMB is, though, of particular importance, since a general regenerative stimulus would be of great benefit in the otherwise only surgically accessible tissues. We therefore investigated the influence of different wavelengths - blue (475 nm), green (516 nm) or red (635 nm) of a low-level laser (LLL) - on the chondrogenic differentiation of chondrocytes and adipose derived stromal cells of different human donors and applied the light in different settings (2D, 3D) with cells in a proliferative or differentiating stage. All assessed parameters (spheroid growth, histology, matrix quantification and gene expression) revealed an influence of LLL on chondrogenesis in a donor-, wavelength- and culture-model-dependent manner. Especially encouraging was the finding, that cells with poor chondrogenic potential could be improved by one single 2D treatment. Amongst the three wave lengths, red light was the most promising one with the most positive impact. Although in vivo data are still missing, these in vitro results provide evidence for a proper biofunctional effect of LLL.
More and more evidences showed that cartilage harbored local progenitor cells that could differentiate toward osteoblast, chondrocyte, and adipocyte. However, our previous results showed that osteoarthritis derived chondroprogenitor cells (OA-CPC) exhibited strong osteogenic potential even in chondrogenic condition. How to promote their chondrogenic potential is the key for cartilage repair and regeneration in osteoarthritis. Recently, lipid availability was proved to determine skeletal progenitor fate. Therefore, we aim to determine whether lipid inhibition under 3D culture condition could enhance OA-CPC chondrogenesis. Moreover, glucose concentration was also evaluated for chondrogenic capacity. Although there are many researches showed that lower glucose promotes chondrogenesis, in our results, we found that OA-CPC in high concentration of glucose (4.5g/L) with lipid inhibitor (GW1100) showed strongest chondrogenic potential, which could form largest cell pellet with strong proteoglycan staining, COL II expression and no COL I expression. Besides,
Cartilage injuries often represent irreversible tissue damage because cartilage has only a low ability to regenerate. Thus, cartilage loss results in permanent damage, which can become the starting point for osteoarthritis. In the past, bioactive glass scaffolds have been developed for bone replacement and some of these variants have also been colonized with chondrocytes. However, the hydroxylapaptite phase that is usually formed in bioglass scaffolds is not very suitable for cartilage formation (chondrogenesis). This interdisciplinary project was undertaken to develop a novel slowly degrading bioactive glass scaffold tailored for cartilage repair by resembling the native extracellular cartilage matrix (ECM) in structure and surface properties. When colonized with articular chondrocytes, the composition and topology of the scaffolds should support cell adherence, proliferation and ECM synthesis as a prerequisite for chondrogenesis in the scaffold. To study cell growth in the scaffold, the scaffolds were colonized with human mesenchymal stromal cells (hMSCs) and primary porcine articular chondrocytes (pACs) (27,777.8 cells per mm3) for 7 – 35 d in a rotatory device. Cell survival in the scaffold was determined by vitality assay. Scanning electron microscopy (SEM) visualized cell ultramorphology and direct interaction of hMSCs and pACs with the bioglass surface. Cell proliferation was detected by CyQuant assay. Subsequently, the production of sulphated glycosaminoglycans (sGAGs) typical for chondrogenic differentiation was depicted by Alcian blue staining and quantified by dimethylmethylene blue assay assay. Quantitative real-time polymerase chain reaction (QPCR) revealed gene expression of cartilage-specific aggrecan, Sox9, collagen type II and dedifferentiation-associated collagen type I. To demonstrate the ECM-protein synthesis of the cells, the production of collagen type II and type I was determined by immunolabelling. The bioactive glass scaffold remained stable over the whole observation time and allowed the survival of hMSCs and pACs for 35 days in culture. The SEM analyses revealed an intimate cell-biomaterial interaction for both cell types showing cell spreading, formation of numerous filopodia and ECM deposition. Both cell types revealed initial proliferation, decreasing after 14 days and becoming elevated again after 21 days. hMSCs formed cell clusters, whereas pACs showed an even distribution. Both cell types filled more and more the pores of the scaffold. The relative gene expression of cartilage-specific markers could be proven for hMSCs and pACs. Cell associated sGAGs deposition could be demonstrated by Alcian blue staining and sGAGs were elevated in the beginning and end of the culturing period. While the production of collagen type II could be observed with both cell types, the synthesis of aggrecan could not be detected in scaffolds seeded with hMSCs. hMSCs and pACs adhered, spread and survived on the novel bioactive glass scaffolds and exhibited a chondrocytic phenotype.
SOX genes comprise a family of transcription factors characterised by a conserved HMG-box domain that confer pleiotropic effects on cell fate and differentiation through binding to the minor groove of DNA. Paracrine regulation and contact-dependant Notch signalling has been suggested to modulate the induction of SOX gene expression. The objective of this study is to investigate the crosstalk between and preconditioning of mesenchymal stem cells (MSCs) with chondrocytes through comparing SOX gene expression in their co-culture and respective monocultures. Our study adopted an AMSC phenotype was evidenced by the expression of CD105, CD73, CD90 & heterogenous CD34 but not CD45, CD14, CD19 & HLA-DR in flow cytometry, and also differentiation into chondrogenic, osteogenic and adipogenic lineages with positive Alcian blue, Alizarin Red and Oil Red O staining. The expression of SOX5, SOX6, and SOX9 were greater in observed co-cultures than would be expected from an expression profile modelled from monocultures. The findings provides evidence for the upregulation of SOX family transcription factors expression during the co-culture of MSCs and chondrocytes, suggesting an active induction of chondrogenic differentiation and change of cell fate amidst a microenvironment that facilitates cell-contact and paracrine secretion. This provides insight into the chondrogenic potential and therapeutic effects of MSCs preconditioned by the chondrocyte secretome (or potentially chondrocytes reinvigorated by the MSC secretome), and ultimately, cartilage repair.
The unique properties of mesenchymal stem cells (MSCs) and their natural presence within the bone marrow make them an attractive source of cells for novel cartilage repair strategies. As mechanics play a critical role
Mesenchymal Stem Cells (MSCs) are a candidate cell type for treating osteoarthritic focal defects.
To unravel the relation between mechanical loading and biological response, cell-seeded hydrogel constructs can be used in bioreactors under multi-axial loading conditions that combines compressive with torsional loading. Typically, considerable biological variation is observed. This study explores the potential confounding role of mechanical factors in multi-directional loading experiments. Indeed, depending on the material properties of the constructs and characteristics of the mechanical loading, the mechanical environment within the constructs may vary. Consequently, the local biological response may vary from chondrogenesis in some parts to proteoglycan loss in others. This study uses the finite element method to investigate the effects of material properties of cell-seeded constructs and multiaxial loading characteristics on local mechanical environment (stresses and strains) and relate these to chondrogenesis (based on maximum compressive principal strain (MCPS) - Zahedmanesh et al., 2014) and proteoglycan loss (based on fluid velocity (FV) - Orozco et al., 2018). The construct was modelled as a homogenized poro-hyperelastic (using a Neohookean model and Darcys law) cylinder of 8mm diameter and equal height using Abaqus. The bottom surface was fully constrained and dynamic unconfined compression and torsion loading were applied to the top surface. Free fluid flow was allowed through the lateral surface. We studied the sensitivity of the maximum values of the target parameters at 9 key locations to the material parameters and loading characteristics. Six input parameters were varied in preselected ranges: elastic modulus (E=[20,80]kPa), Poissons ratio (nu=[0.1,0.4]), permeability (k=[1,4]e-12m4/Ns), compressive strain (Comp=[5,20]%), rotation (Rot=[5,20]°) and loading frequency (Freq=[1,4]Hz). A full-factorial design of experiment method was used and a first-order polynomial surface including the interactions fitted the responses. MCPS varies between 7.34% and 33.52% and is independent of the material properties (E, nu and k) and Freq but has a high dependency on Comp and a limited dependency on Rot. The maximum value occurs centrally in the construct, except for high values of Rot and low Comp where it occurs at the edges. FV vary between 0.0013mm/sec and 0.1807mm/sec and dominantly depends on E, k and Comp, while its dependency on Rot and Freq is limited. The maximum value usually occurs at the edges, although at high Freq it may move towards the center of the superficial and deep zones. This study can be used as a guideline for the optimized selection of mechanical parameters of hydrogel for cell-seeded constructs and loading conditions in multi-axial bioreactor studies. In future work, we will study the effect in intact and injured cartilage explants.
Joint injuries often result in inflammation and cartilage defects. When inflamed, the synovium secretes factors that prevent successful cartilage repair by inhibiting chondrogenic differentiation of progenitor cells. In particular the pro-inflammatory macrophages in the synovium are indicated to contribute to this anti-chondrogenic effect. Thus, we aimed to counteract the anti-chondrogenic effect of inflamed synovium by modulating synovial inflammation and its macrophages. Synovium tissue obtained from osteoarthritic patients undergoing a total knee replacement was cut into explants and cultured for 72 hours +/− 1 µM of the anti-inflammatory drug triamcinolone acetonide (TAA) (Sigma Aldrich). TAA significantly decreased gene expression of
Early cell loss of up to 50% is common to in vitro chondrogenesis of mesenchymal stromal cells (MSC) and stimulation of cell proliferation could compensate for this unwanted effect and improve efficacy and tissue yield for cartilage tissue engineering. We recently demonstrated that proliferation is an essential requirement for successful chondrogenesis of MSC, however, how it is regulated is still completely unknown. We therefore aimed to identify signaling pathways involved in the regulation of proliferation during in vitro chondrogenesis and investigated, whether activation of relevant pathways could stimulate proliferation. Human MSC were subjected to in vitro chondrogenesis for up to 42 days under standard conditions in the presence of 10 ng/ml TGF-β. Cells were or were not additionally treated with inhibitors of bone morphogenetic protein (BMP), insulin-like growth factor (IGF) IGF/PI3K, fibroblast growth factor (FGF) or indian hedgehog (IHH) pathways for two or four weeks. To investigate the stimulation of proliferation by exogenous factors, cells were treated with BMP-4, IGF-1, FGF-18 or purmorphamine (small molecule hedgehog agonist). Proliferation was determined by [3H]-thymidine incorporation.Objective
Design
While mesenchymal stromal cells (MSCs) are a very attractive cell source for cartilage regeneration, an inherent tendency to undergo hypertrophic maturation and endochondral ossification; as well as insufficient extracellular matrix production still prevent their clinical application in cell –based cartilage repair therapies. We recently demonstrated that intermittent treatment of MSC with parathyroid hormone-related protein (PTHrP) during in vitro chondrogenesis significantly enhanced extracellular matrix deposition and concomitantly reduced hypertrophy (1) opposite to constant PTHrP treatment, which strongly suppressed chondrogenesis via the cAMP/PKA pathway (2). Since signal timing seemed to be decisive for an anabolic versus catabolic outcome of the PTHrP treatment, we here aimed to investigate the role of PTHrP pulse frequency, pulse duration and total weekly exposure time in order to unlock the full potential of PTHrP pulse application to enhance and control MSC chondrogenesis. Human bone marrow-derived MSC were subjected to in vitro chondrogenesis for six weeks. From day 7–42, cells were additionally exposed to 2.5 nM PTHrP(1–34) pulses or left untreated (control). Pulse frequency was increased from three times per week (3×6h/week) to daily, thereby maintaining either pulse duration (6h/d, total 42 h/week) or total weekly exposure time (2.6h/d, total 18 h/week). A high frequency of PTHrP-treatment (daily) was important to significantly increase extracellular matrix deposition and strongly suppress ALP activity by 87 %; independent of the pulse duration. A long pulse duration was, however, critical for the suppression of the hypertrophic marker gene IHH, while MEF2C and IBSP were significantly suppressed by all tested pulse duration and frequency protocols. COL10A1, RUNX2 and MMP13 mRNA levels remained unaffected by intermittent PTHrP. A drop of Sox9 levels and a decreased proliferation rate after 6 hours of PTHrP exposure on day 14 indicated delayed chondroblast formation. Decreased IGFBP-2, -3 and -6 expression as well as decreased IGFBP-2 protein levels in culture supernatants suggested IGF-I-related mechanisms behind anabolic matrix stimulation by intermittent PTHrP. The significant improvement of MSC chondrogenesis by the optimization of intermittent PTHrP application timing revealed the vast potential of PTHrP to suppress hypertrophy and stimulate chondrogenic matrix deposition. A treatment with PTHrP for 6 hours daily emerged as the most effective treatment mode. IGF-I and Sox-9 related mechanisms are suggested behind anabolic effects and delayed chondroblasts formation, respectively. Thus, similar to the established osteoporosis treatment, daily injections of PTHrP may become clinically relevant to support cartilage repair strategies relying on MSCs like subchondral bone microfracturing and autologous MSC implantation.
Osteoarthritis is a degenerative disease that results in changes in cartilage extracellular matrix. Human MSCs (Male donors; aged 18–60 years, n = 6) were isolated from bone marrow and expanded for one passage and split into hyperoxic and physioxic MSC cultures, the latter conditions were isolated and expanded using a hypoxia controlled incubator. MSCs with or without physioxic preconditioning were aliquoted into wells of a 96-well cell culture plate in the presence of 10ng/ml TGF-β1 or in combination with either 0.1 or 0.5ng/ml IL-1ß and centrifuged to form pellets. Pellets were then differentiated under their isolation conditions. Pellets removed from culture on days 7, 14 and 21, were evaluated for wet weight, histological (DMMB staining, collagen type I, II, MMP-13 and TGF-β receptor II) and collagen type II ELISA analysis. Preconditioned MSCs demonstrated an enhanced collagen type II and GAG production undergoing chondrogenesis compared to hyperoxic pellets. In the presence of IL-1β, preconditioned MSCs reduced the inhibitory effect of IL-1ß compared to the equivalent conditions under hyperoxic, whereby there was a significant increase in wet weight, GAG and collagen type II production (p < 0.05). Furthermore, preconditioning MSCs had reduced collagen type X expression compared to hyperoxic cultures.Methods
Results
To overcome the severely limited regenerative capacity of cartilage, bone marrow mesenchymal stromal cells (MSCs) are an attractive cell source that is accessible less invasively and in higher quantity than articular chondrocytes (ACs). However, current in vitro chondrogenic protocols induce MSCs to form transient cartilage reminiscent of growth plate cartilage that becomes hypertrophic and is remodeled into bone. In contrast, under the same conditions, ACs form stable articular-like cartilage. Developmental studies in mice have revealed that TGF-beta/BMP, Wnt, and Hedghog/PTHrP signaling are the major regulators of both, articular cartilage and endochondral bone formation. While the differential regulation of TGF-beta/BMP and Hedgehog/PTHrP in endochondral MSC versus AC chondral differentiation is established knowledge, little is known about Wnt in these cells. Aim of this study was therefore to compare in vitro levels of Wnt network components in MSC-derived endochondral versus AC-derived articular cartilage. Whole genome expression data comparing human MSCs and ACs at days 0 and 28 of in vitro chondrogenesis were screened for differential expression of Wnt ligands, receptors, co-receptors, activators/inhibitors and signaling molecules. Expression of the most strongly differentially regulated Wnt network genes was studied in detail during in vitro chondrogenesis of MSCs vs ACs via qPCR at days 0, 7, 14, 21, 35, and 42. During early chondrogenesis, most Wnt components were expressed at low levels in both MSCs and ACs, with two exceptions. MSCs started into chondrogenesis with significantly higher levels of the non-canonical ligand WNT5A. ACs on the other hand expressed significantly higher levels of the canonical antagonist FRZB on day 0. During advancing and late chondrogenesis, MSCs downregulated WNT5A but still expressed it at significantly higher levels at day 42 than ACs. Strong regulation was also evident for WNT11 and the receptor PTK7 which were both strongly upregulated in MSCs. Unlike MSCs, ACs barely regulated these non-canonical Wnt genes. With regard to canonical signaling, only the transcription factor LEF1 showed strong upregulation in MSCs, while FZD9 and FRZB were only slightly upregulated in late MSC chondrogenesis. Again, these genes remained unregulated in ACs. Our data suggest that a dynamic Wnt network regulation may be a unique characteristic of endochondral MSC differentiation while during AC chondral differentiation Wnt expression remained rather low and stable. Overall, mRNA of the non-canonical Wnt network components were stronger regulated than canonical factors which may indicate that primarily non-canonical signaling is dynamic in endochondral differentiation. Next step is to assess levels of active and total beta-catenin, the canonical Wnt mediator, and to use Wnt antagonists to establish a causal relationship between Wnt signaling and endochondral differentiation.
We have developed 3D combinatorial hydrogels containing cartilage extracellular matrix (ECM) proteins for modulating chondrogenesis of adipose-derived stromal cells. Our platform allows independently tunable biochemical and mechanical properties, which may provide a valuable tool for elucidating how ECM biochemical cues interact with matrix stiffness to regulate stem cell chondrogenesis. Adipose-derived stromal cells (ADSC) hold great promise for cartilage repair given their relative abundance and ease of isolation. Biomaterials can serve as artificial niche to direct chondrogenesis of ADSCs, and extracellular matrix (ECM) protein-based scaffolds are highly biomimetic. However, incorporating ECM molecules into hydrogel network often lead to simultaneous changes in both biochemical ligand density and matrix stiffness. This makes it difficult to understand how various niche signals interact together to regulate ADSC fate. To overcome these limitations, the goal of this study is to develop an ECM-containing hydrogel platform with independently tunable biochemical and mechanical cues for modulating ADSC chondrogenesis in 3D. We hypothesise that decreasing the degree of crosslinking of ECM molecules may allow their incorporation without affecting the matrix stiffness. The effects of interactive signaling between ECM molecules and matrix stiffness on ADSC chondrogenesis in 3D was then examined using this platformSummary Statement
Introduction
Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array. Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP.
Abstract. Objectives. Tissue repair is believed to rely on tissue-resident progenitor cell populations proliferating, migrating, and undergoing differentiation at the site of injury. During these processes, the crosstalk between mesenchymal stromal/stem cells (MSCs) and macrophages has been shown to play a pivotal role. However, the influence of extracellular matrix (ECM) remodelling in this crosstalk, remains elusive. Methods. Human MSCs cultured on tissue culture plastic (TCP) and encased within fibrin in vitro were treated with/without TNFα and IFNγ. Human monocytes were cocultured with untreated/pretreated MSCs on TCP or within fibrin. After seven days, the conditioned media (CM) were collected. Human chondrocytes were exposed to CM in a migration assay. The impact of TGFβ was assessed by adding an inhibitor (TGFβRi). Cell activity was assessed using RT-qPCR and XL-protein-profiler-array. Results. Previously, we demonstrated that culturing human MSCs within 3D-environments significantly enhances their immunoregulatory activity in response to pro-inflammatory stimuli. In this study, monocytes were co-cultured with MSCs within fibrin, acquiring a distinct M2-like repair macrophage phenotype in contrast to TCP co-cultures. MSC/macrophage CM characterization using a protein array demonstrated differences in release of several factors, including chemokines, growth factors and ECM components. Chondrocyte migration was significantly reduced in CM from untreated MSC/monocytes co-cultures in fibrin compared to CM of untreated MSCs/monocytes on TCP. This impact on migration was not seen with chondrocytes cultured in CM of monocytes co-cultured with pretreated MSCs in fibrin. The CM of monocytes co-cultured with pretreated MSCs in fibrin up-regulates COL2A1 and SOX9 compared to TCP.
Introduction and Objective. The meniscus is composed of two distinct regions, a vascular outer zone and an avascular inner zone. Due to vascularization, tears within the vascular zone can be treated by suturing. However, tears in the avascular zone have a poor healing capacity and partial meniscectomy is used to prevent further pain, although this leads to early osteoarthritis. Previous studies have demonstrated that the vascular zone contains a progenitor population with multilineage differentiation potential. Isolation and propagation of these progenitors can be used to develop cell-based therapies for treating meniscal defects. In vivo, the meniscus resides under a low oxygen environment, also known as physioxia (2–7% oxygen) and previous work suggests that it promotes the meniscal phenotype. The objective of the study was to isolate progenitor populations from both meniscus regions and to examine their clonogenecity and differentiation potential under both hyperoxia (20% oxygen) and physioxia (2% oxygen). We hypothesize that physioxia will have a beneficial effect on colony formation and trilineage differentiation of meniscal cells. Materials and Methods. Human meniscus (n =4; mean age: 64 + 6) tissue was split into vascular and avascular regions, finely cut into small pieces and then sequentially digested in pronase (70U/mL) and collagenase (200U/mL) at 37. 0. C. Avascular and vascular meniscus cells were counted and split equally for expansion under hyperoxia and physioxia at a seeding density of 5 × 10. 3. cells/cm. 2. At passage 1, cells were seeded at 2, 5 and 20 cells/cm. 2. in 10cm dishes for observing colony formation using crystal violet assay. At passage 3, vascular and avascular meniscus cells were differentiated towards the chondrogenic, osteogenic and adipogenic lineage.
Introduction. Cell-based therapy is needed to overcome the lacking intrinsic ability of cartilage to heal. Generating cartilage tissue from human bone marrow-derived stromal cells (MSC) is limited by up-regulation of COL10, ALP and other hypertrophy markers in vitro and calcifying cartilage at heterotopic sites in vivo. MSC hypertrophic differentiation reflects endochondral ossification, unable to maintain a stable hyaline stage, as observed by redifferentiation of articular chondrocytes (AC). Several transcription factors (TF), are held responsible for hypertrophic development. SOX9, the master regulator of chondrogenesis is also, alongside MEF2C, regulating hypertrophic chondrocyte maturation and COL10 expression. RUNX2/3 are terminal markers driving chondrocyte hypertrophy, and skeletogenesis. However, so far regulation of these key fate determining TFs has not been studied thoroughly on mRNA and protein level through chondrogenesis of human MSC. To fill this gap in knowledge, we aim to uncover regulation of SOX9, RUNX2/3, MEF2C and other TFs related to hypertrophy during MSC chondrogenesis in vitro and in comparison to the gold standard AC redifferentiation. Methods. Expression of SOX9, RUNX2/3 and MEF2C was compared before and during 6-week chondrogenic re-/differentiation of human MSC and AC on mRNA level via qRT-PCR and protein level via Western-Blotting.
Mesenchymal stromal cells (MSC) are multipotent, self-renewing cells that are an attractive cell source for cartilage regeneration strategies. While articular chondrocytes form stable cartilage-like tissue under chondrogenic in vitro conditions, a still unsolved problem of chondrocyte production from MSC is their endochondrol development leading to the formation of transient instead of stable articular cartilage. In order to identify relevant molecular determinants of chondrocyte redifferentiation versus MSC chondrogenesis and hypertrophy, this study assessed the differential expression of members of the transforming growth factor β (TGF-β) -superfamily, their receptors and antagonists between differentiating MSC and human articular chondrocytes (HAC).
The aim of this study was to investigate the effect of granulocyte-colony stimulating factor (G-CSF) on mesenchymal stem cell (MSC) proliferation MSCs from rabbits were cultured in a control medium and medium with G-CSF (low-dose: 4 μg, high-dose: 40 μg). At one, three, and five days after culturing, cells were counted. Differential potential of cultured cells were examined by stimulating them with a osteogenic, adipogenic and chondrogenic medium. A total of 30 rabbits were divided into three groups. The low-dose group (n = 10) received 10 μg/kg of G-CSF daily, the high-dose group (n = 10) received 50 μg/kg daily by subcutaneous injection for three days prior to creating cartilage defects. The control group (n = 10) was administered saline for three days. At 48 hours after the first injection, a 5.2 mm diameter cylindrical osteochondral defect was created in the femoral trochlea. At four and 12 weeks post-operatively, repaired tissue was evaluated macroscopically and microscopically.Objectives
Methods
We hypothesised that meniscal tears treated with mesenchymal stem cells (MSCs) together with a conventional suturing technique would show improved healing compared with those treated by a conventional suturing technique alone. In a controlled laboratory study 28 adult pigs (56 knees) underwent meniscal procedures after the creation of a radial incision to represent a tear. Group 1 (n = 9) had a radial meniscal tear which was left untreated. In group 2 (n = 19) the incision was repaired with sutures and fibrin glue and in group 3, the experimental group (n = 28), treatment was by MSCs, suturing and fibrin glue. At eight weeks, macroscopic examination of group 1 showed no healing in any specimens. In group 2 no healing was found in 12 specimens and incomplete healing in seven. The experimental group 3 had 21 specimens with complete healing, five with incomplete healing and two with no healing. Between the experimental group and each of the control groups this difference was significant (p <
0.001). The histological and macroscopic findings showed that the repair of meniscal tears in the avascular zone was significantly improved with MSCs, but that the mechanical properties of the healed menisci remained reduced.