Advertisement for orthosearch.org.uk
Orthopaedic Proceedings Logo

Receive monthly Table of Contents alerts from Orthopaedic Proceedings

Comprehensive article alerts can be set up and managed through your account settings

View my account settings

Visit Orthopaedic Proceedings at:

Loading...

Loading...

Full Access

Research

DIFFERENTIAL EXPRESSION OF TGF-ß SUPERFAMILY MEMBERS AND ROLE OF SMAD1/5/9-SIGNALLING IN CHONDRAL VERSUS ENDOCHONDRAL CHONDROCYTE DIFFERENTIATION

European Orthopaedic Research Society (EORS) 2016, 24th Annual Meeting, 14–16 September 2016. Part 1.



Abstract

Mesenchymal stromal cells (MSC) are multipotent, self-renewing cells that are an attractive cell source for cartilage regeneration strategies. While articular chondrocytes form stable cartilage-like tissue under chondrogenic in vitro conditions, a still unsolved problem of chondrocyte production from MSC is their endochondrol development leading to the formation of transient instead of stable articular cartilage. In order to identify relevant molecular determinants of chondrocyte redifferentiation versus MSC chondrogenesis and hypertrophy, this study assessed the differential expression of members of the transforming growth factor β (TGF-β) -superfamily, their receptors and antagonists between differentiating MSC and human articular chondrocytes (HAC).

Chondrogenesis of human MSC and redifferentiation of HAC was induced in micromass pellet culture. Gene expression of MSC (n=5) and HAC (n=5) was compared using a transcriptome analysis on Illumina platform. Functional regulation of relevant candidate molecules was assessed in independent MSC and HAC populations by qRT-PCR. Smad signalling during chondrogenic differentiation was analysed by immunohistochemistry and Western Blotting. BMP signalling in both populations was modulated by co-treatment with BMP-4/7 or an inhibitor of Smad1/5/9 signalling. Proteoglycan and DNA content, collagen type II and -X deposition, gene expression of chondrogenic and hypertrophic markers as well as alkaline phosphatase (ALP) activity were quantitatively assessed at different time points.

In HAC, TGF-β receptor 2 and 3 (TGFBR2/3) were up-regulated to significantly higher levels than in MSC. BMP4, expressed during HAC expansion, was suppressed while CHL2 and CHRD levels raised. In MSC, BMP4 and BMP7 were induced while TGFBR2 and TGFBR3 were down-regulated. Staining for pSmad1/5/9 in HAC demonstrated positive cells dispersed throughout the pellets at day 3 and 5 while lower pSmad1/5/9 immunostaining was observed in MSC. In HAC and MSC pellets pSmad staining decreased during chondrogenesis, in line with Western Blot results. Medium supplementation with BMP-4/7 did not improve cartilaginous matrix deposition by MSC but raised ALP-activity. When Smad1/5/9 phosphorylation was blocked in MSC culture by dorsomorphin treatment (day 14–42) COL2A1 and COL10A1 expression decreased significantly and collagen type II and type X deposition were reduced. ALP activity dropped to 12 % of control levels.

Inhibition of pSmad1/5/9 signalling was unattractive to shift chondrogenesis of MSC away from endochondral development since it unpaired SOX9 expression and strongly reduced cartilaginous matrix deposition along with hypertrophy. Thus no simple correlation exists between beneficial pSmad2/3 versus unwanted pSmad1/5/9 signalling during MSC chondrogenesis.