Introduction. Previous registry studies of ceramic-on-polyethylene (C-PE) and ceramic-on-ceramic (COC) have focused on revision outcomes following primary surgery. Less is known about the effect of
Introduction. Previous studies of ceramic-on-polyethylene (C-PE) and ceramic-on-ceramic (COC) hip bearings have focused on outcomes following primary surgery. Less is known about the utilization or outcomes of
Aim. Alumina ceramic on
Introduction. The success of total hip arthroplasty has meant its indications have been extended to the younger more active patient. Due to the higher activity levels and increased demands of these patients, revision rates have been traditionally higher than when compared to older patients [1]. Ceramic on
Large bearing surfaces are appealing in total hip arthroplasty (THA) as they may help create a greater range of impingement free motion and reduce the risk of dislocation. However, attempts to achieve this with a metal bearing surface have been blighted by adverse reactions to metal debris.
The objective of this study was to determine whether the bearing surface is a risk factor for revision after late dislocation in total hip arthroplasty (THA). Data from primary THAs were extracted from the New Zealand Joint Registry over a 13-year period. The mean age of patients was 68.9 years; 53.2% were female. The surgical approach used was posterior in 66% of THAs, lateral in 29% and anterior in 5%. There were 53,331 (65.1%) metal-on-polyethylene THAs, 14,093 (17.2%) ceramic-on-polyethylene, 8,177 (10.0%) ceramic-on-ceramic, 461 (0.5%) ceramic-on-metal, 5910, and (7.2%) metal-on-metal. The primary endpoint was late revision for dislocation, with ‘late’ defined as greater than one year post-operatively. 73,386 hips were available for analysis. The overall revision rate was 4.3% (3,130 THAs), 1.1% (836) were revised for dislocation. Only 0.65% (470) hips were revised for dislocation after the first post-operative year. The unadjusted hazard ratios (HR) showed significantly higher rates of revision for dislocation in ceramic-on-polyethylene (HR 2.48; p=0.001) and metal-on-polyethylene (HR 2.00; 95% p =0.007) compared to ceramic-on-ceramic. However, when adjusted for head size, age and surgical approach, only ceramic-on-polyethylene (HR 2.10; p=0.021) maintained a significantly higher rate of revision, whereas metal-on-polyethylene approached significance (HR 1.76; 95% p = 0.075). In New Zealand, dislocation is the most common reason for revision, ahead of aseptic loosening of the acetabular component. The relationships between bearing materials and risk of revision for late dislocation is controversial. However, in this study ceramic-on-ceramic shows lower risk rates for revision than other bearing surface combinations. Low wear and less debris, limited peri-articular inflammatory reaction and an healthy fibrotic pseudo-capsule are potential factors determining long-term stability of the hip joint.
The fourth generation ceramic, in which zirconia is incorporated into the alumina matrix, was developed to reduce the risk of ceramic fractures. The purpose of this study was to evaluate the survivorship, clinical and radiographic results, and bearing-related failures associated with total hip arthroplasty using zirconia-toughened alumina ceramic-on-ceramic bearings over a minimum follow-up of 5 years. We retrospectively analysed 135 patients (151 hips) who underwent cementless total hip arthroplasty using zirconia-toughened alumina ceramic-on-ceramic bearings. There were 58 men and 77 women with mean age of 55.9 years (range, 20 to 82 years) at index surgery. Acetabular and femoral components were cementless in all hips. A 36 mm head was used in 81 of 151 hips and a 32 mm head was used in 70 hips with smaller acetabular shells. The mean duration of follow-up was 6.1 years (range, 5 to 6.8 years).Purpose
Materials and methods
A standard is defined as something established by authority, custom, or general consent. Clearly that does not exist for ceramic on ceramic total hip replacement. A better question is: Is there any indication for a ceramic on ceramic total hip. The answer to that question should when possible be based on clinical outcome data including the value added (or not) with this more expansive technology. Ceramic on ceramic has been popularised based on its low wear. Is this clinically relevant? Probably not, based on currently available data. Both metal on highly crosslinked polyethylene and ceramic on highly crosslinked polyethylene have very low clinically documented wear rates with excellent outcomes in multiple studies. In addition, ceramic on
Background/Purpose. Total hip arthroplasties (THAs) with
Introduction and Aims. The 21. st. Century has seen
Introduction. Two types of ceramic materials currently used in total hip replacements are third generation hot isostatic pressed (HIPed) alumina ceramic (commercially known as BIOLOX®forte, CeramTec) and fourth generation alumina matrix composite ceramic consisting of 75% alumina, 24% zirconia, and 1% mixed oxides (BIOLOX®delta, CeramTec). Delta ceramic hip components are being used worldwide, but very few studies have analyzed retrieved delta bearings. The aim of this study is to compare edge loading ‘stripe’ wear on retrieved femoral heads from delta-on-delta, delta-on-forte and forte-on-forte
Aims. Will Hydroxyapatite ceramic coated (HAC) arthroplasty perform well in patients under the age of fifty?. Methods. This is a study of 269 Hydroxyapatite ceramic coated (HAC) hip arthroplasties in patients under, the age of fifty with annual review using Harris Hip Score (HHS) and plain X-rays. Assessments were over a maximum of 19 years. Early patients (46) had implants with
Osteonecrosis is a pathologic bone condition caused by a disruption in the osseous circulation and impairment of normal cellular function which ultimately leads to bone infarction, osteocyte death, and joint degeneration. The incidence of osteonecrosis in the general population has been reported to be approximately 3 per 100,000 people. Up to 20,000 new cases are diagnosed each year and this condition is the indication for surgery in approximately 10% of all total hip arthroplasties performed in the United States. The hip is the most common joint affected, with approximately 75% of cases occurring in this joint, although multifocal osteonecrosis (defined as involvement of more than 3 joints) can also occur. Other commonly observed locations for osteonecrotic lesions include the knee, shoulder, wrist, and ankle. Joint preserving procedures may be performed for early stages without evidence of collapse, while intermediate lesions (e.g. femoral head collapse < 2 mm) may be candidates for joint preserving procedures such as bone grafting and rotational or proximal femoral varus osteotomies. However, total hip arthroplasty is usually required in advanced cases where there are large lesions, deformation of the femoral head, or acetabular involvement. Osteonecrosis has been traditionally associated with poor outcomes following total hip arthroplasty. However, recent studies using newer implant designs and surgical techniques have demonstrated outcomes comparable to the general total hip arthroplasty population. Johansson and colleagues, in a systematic reviewed of the literature, observed a decrease in the revision rate from 17% to 3% for arthroplasties performed later than 1990. The clinical outcomes were also comparable between patients who had osteoarthritis and those who had osteonecrosis. The young age at which these patients often present makes bearing surface choice challenging. Bearings that have low liner wear rates, such as
Introduction. The successful performance of ceramic on
Due to issues related to osteolysis which became increasingly evident in the 1990's, approaches to combat wear focused upon either improving ultra-high molecular grade polyethylene or to abandon it and employ alternative bearings: metal upon metal or ceramic upon ceramic (COC). Ceramics have played a role in hip bearings for decades with much of the experience coming from Europe. While there is consistent evidence of low wear rates in this bearing couple due to its surface hardness, wettability and resultant low friction, problems unique to this bearing couple were noted: a small but real incidence of fracture, surface damage due to metal transfer and stripe wear as well as the unique issue of squeaking. What we have learned is that these hard bearings (either COC or Metal on Metal) despite being able to use larger diameter heads, are exquisitely sensitive to component position and orientation. With the tremendous improvements in 2nd and now 3rd generation crosslinked polyethylenes demonstrating vastly reduced wear rates and having none of the issues of fracture, stripe wear, or squeaking, it remains unclear what role
Introduction. Dislocation is one of the leading causes of revision after primary total hip arthroplasty (THA). Polyethylene wear is one of the risk factors for late dislocations (>2 years). It can induce an inflammatory response resulting in distension and thinning of the pseudocapsule, predisposing the hip to dislocation. Alternatively, eccentric seating of the femoral head in a worn out socket may result in an asymmetric excursion arc predisposing the hip to impingement, levering out and dislocation. Highly cross linked polyethylene has a significantly lower wear rate as compared to conventional polyethylene. Incidence of late dislocations has been shown to be significantly greater with conventional polyethylene bearings as compared to
Age is often used as a surrogate for activity. However, it has been demonstrated that BMI has a stronger correlation to post-operative activity than age. The fundamental exercise in choosing a bearing is maximizing the benefit-to-risk ratio. The following question should be addressed on a patient by patient basis: what available bearing is most likely to meet the needs of this patient, with an acceptable risk of revision surgery during their lifetime, is accepted in my community, and with a justifiable cost?. The risk of ceramic fracture is very low with Biolox® Delta, and that risk decreases with increasing head size. However, concerns of taper corrosion, not wear and osteolysis, have driven the increase in utilization of ceramic heads. More research is needed into the etiology of taper corrosion, especially surgeon variability in taper assembly. Crosslinked polyethylene has substantially reduced wear, osteolysis, and revision rates compared to non-crosslinked polyethylene, regardless of the countersurface. In the AOA National Joint Replacement Registry, ceramic/ceramic, metal/XLPE, ceramic/XLPE, and ceramicised metal/XLPE are the most commonly used bearing surfaces. With 12–15 year follow-up, there is no difference in the cumulative percent revision of these four bearings in patients aged <55. Ceramic heads are variably more expensive. The ability to recoup the increased cost of ceramic heads through a diminished lifetime revision cost is dependent on the price premium for ceramic and the age of the patient. A wholesale switch to
Hip arthroplasty surgeons have various bearing choices to make on behalf of their patients. We make those choices based on our knowledge of pre-clinical wear testing data and the outcome of clinical and radiological follow-up studies. The initial use of conventional polyethylene revealed limitations in its use in younger patients. Modern highly crosslinked polyethylene is a vastly improved bearing surface that means less wear and its consequences. Despite this, registry data still suggests that loosening, lysis and dislocation are problematic causes of implant failure. The functional success of hip replacement surgery, the ageing population and younger patients requesting arthroplasty means we should predict ongoing issues consequent to wear related events even with the newer polyethylenes. Ceramic-on-ceramic bearings surfaces have a long history of successful clinical use. The benefits of
Background. Wear and osteolysis are major contributors, which limit the durability of total hip Arthroplasty (THA) and ultimately cause it to fail. Efforts were made to decrease wear by highly cross-linked polyethylene (HXLPE) and using