Introduction. Alumina ceramic-on-highly cross-linked polyethylene bearings (Al-on-X-linked PE) are attractive because of the potential for reduced wear, osteolysis and loosening of the component. The purpose of this study was to evaluate the clinical and radiographic outcomes of
The M2a-38tm metal on metal total hip arthroplasty showed a high incidence of pseudotumors and an unexpected high revision rate in our thoroughly screened cross sectional cohort. After the revival of the metal on metal (MoM) bearing in total hip arthroplasty (THA) at the beginning of this century, there are now serious questions about this type of bearing. The advantage of large head MoM bearing is the increase in range of motion and stability. In our institution the choice was made for 38 mm heads. During the last few years concerns have been raised about the relationship of MoM bearing and elevated serum cobalt and chromium ion levels, their local and systemic toxicological effects and the incidence of local tumorous masses (pseudotumors). Are these findings applicable for all MoM bearings or are there also product specific issues. We present the outcome of a cementless MoM THA using a 38mm head in a unique consecutive series of 377 THA who were performed in our institution.Summary
Introduction
A large number of total hip arthroplasties (THA) are performed each year, of which 60 % use cementless femoral fixation. This means that the implant is press-fitted in the bone by hammer blows. The initial fixation is one of the most important factors for a long lasting fixation [Gheduzzi 2007]. It is not easy to obtain the point of optimal initial fixation, because excessively press-fitting the implant by the hammer blows can cause peak stresses resulting in femoral fracture. In order to reduce these peak stresses during reaming, IMT Integral Medizintechnik (Luzern, Switzerland) designed the Woodpecker, a pneumatic reaming device using a vibrating tool. This study explores the feasibility of using this Woodpecker for implant insertion and detection of optimal fixation by analyzing the vibrational response of the implant and Woodpecker. The press-fit of the implant is quantified by measuring the strain in the cortical bone surrounding the implant. An in vitro study is presented. Two replica femur models (Sawbones Europe AB, Malmo Sweden) were used in this study. One of the femur models was instrumented with three rectangular strain gauge rosettes (Micro-Measurements, Raleigh, USA). The rosettes were placed medially, posteriorly and anteriorly on the proximal femur. Five paired implant insertions were performed on both bone models, alternating between standard hammer blow insertions and using the Woodpecker. The vibrational response was measured during the insertion process, at the implant and Woodpecker side using two shock accelerometers (PCB Piezotronics, Depew, NY, USA). The endpoint of insertion was defined as the point when the static strain stopped increasing. Significant trends were observed in the bandpower feature that was calculated from the vibrational spectrum at the implant side during the Woodpecker insertion. The bandpower is defined as the percentage power of the spectrum in the band 0–1000 Hz. Peak stress values calculated from the strain measurement during the insertion showed to be significantly (p < 0.05) lower at two locations using the Woodpecker compared to the hammer blows at the same level of static strain. However, the final static strain at the endpoint of insertion was approximately a factor two lower using the Woodpecker compared to the hammer. A decreasing trend was observed in the bandpower feature, followed by a stagnation. This point of stagnation was correlated with the stagnation of the periprosthetic stress in the bone measured by the strain gages. The behavior of this bandpower feature shows the possibility of using vibrational measurements during insertion to assess the endpoint of insertion. However it needs to be taken into account that it was not possible to reach the same level of static strain using the Woodpecker as with the hammer insertion. This could mean that either extra hammer blows or a more powerful pneumatic device could be needed for proper implant insertion.
The dual-mobility cup seems to bring more stability without changing the gait pattern. Dislocations and instability are among the worst complications after THA in elderly patient. Dual mobility cups seem to lower these risks. To our knowledge no study performed a gait analysis of dual cup in this group.Summary Statment
Introduction
Introduction. Cephalomedullary nailing (CMN) is commonly used for unstable pertrochanteric fracture. CMN is relatively safe method although various complications can potentially occur needing revision surgery. Commonly used salvage procedures such as renailing, hemiarthroplasty, conservative treatment or total hip arthroplasty (THA) are viable alternatives. The aim was to investigate the rate of THA after CMN and evaluate the performance on conversion total hip arthroplasty (cTHA) after failure of CMN. Method. Collected data included patients from two orthopedic centers. Data consisted of all cTHAs after CMN between 2014-2020 and primary
Introduction and Objective. A proper restoration of hip biomechanics is fundamental to achieve satisfactory outcomes after total hip arthroplasty (THA). A global hip offset (GO) postoperatively reduction of more than 5 mm was known to impair hip functionality after THA. This study aimed to verify the restoration of the GO radiographic parameter after primary THA by the use of a cementless femoral stem available in three different offset options without length changing. Materials and Methods. From a consecutive series of 201 patients (201 hips) underwent primary
SL-PLUS MIA stem (Smith & Nephew Orthopaedics AG) is a modified implant of Zweymuller type SL-PLUS standard stem (Smith & Nephew Orthopaedics AG). We constructed finite element (FE) models and analysed equivalent stresses in the femur. In addition, we measured bone mineral density (BMD) in the femur by dual-energy X-ray absorptiometry (DEXA) after THA. The purpose of this study was to investigate the equivalent stress and to compare the results of the FE analyses with changes in BMD after THA. Twenty-one patients (18 women and 3 men) who underwent primary
Introduction. The purpose of this study was to evaluate the functional and radiographical mid-term follow-up results of a second generation metal-on-metal
Ceramic-on-ceramic (CoC) total hip arthroplasty (THA) can produce articular noise during the normal activities, generating discomfort to the patient. THA noise has to be investigated also as a potential predictor and a clinical sign of prosthetic failure. An observational study has been carried out to characterize the noise in CoC
Dual mobility (DM) bearing implants reduce the incidence of dislocation following total hip arthroplasty (THA) and as such they are used for the treatment of hip instability in both primary and revision cases. The aim of this study was to compare lower limb muscle activity of patients who underwent a total hip arthroplasty (THA) with a dual mobility (DM) or a common cup (CC) bearing compared to healthy controls (CON) during a sit to stand task. A total of 21 patients (12 DM, 9 CC) and 12 CON were recruited from the local Hospital. The patients who volunteered for the study were randomly assigned to either a DM or a CC
Introduction. Ceramic-on-ceramic couplings are an attractive alternative bearing surface to eliminate or reduce problems related to polyethylene wear debris. Past disappointing experiences with alumina-ceramic bearings have led to many improvements in the manufacture and the design of ceramic implants. The purpose of this study was to report the results of contemporary alumina-on-alumina total hip arthroplasties (THAs) with regard to wear, osteolysis, and fracture of the ceramic in patients with osteonecrosis of the femoral head. Methods. Between February 1998 and October 2003, 365 patients (432 hips) with osteonecrosis of the femoral head underwent
We determined serum cobalt levels in 55 patients by atomic absorption spectrophotometry before and after implantation of
Currently, there are no generally accepted treatments for the prevention of osteonecrosis. To compound this further, despite considerable research efforts, the natural history of this disease remains poorly understood. The disease process appears to be initially asymptomatic, but after symptoms appear, the course becomes rapidly progressive. Clinical studies have shown that, if left untreated, collapse of the femoral head will occur in 80 per cent of the cases or greater within four years. As our knowledge of the etiology and pathogenesis of osteonecrosis improves, new treatments to halt, or at least impede, the progression of the disease may be possible. Achieving the best outcomes in the treatment of osteonecrosis depends on early, accurate diagnosis, and prompt treatment appropriate for the stage of the disease. In many cases, if treated early, long-term preservation of the native joint is possible. Magnetic resonance imaging allows accurate diagnosis in even the earliest asymptomatic stages of the disease. Non-surgical treatments such as pharmacological agents have shown promise in experimental studies, although further work remains before they are appropriate for widespread use. Various hip salvaging procedures such as core decompression, percutaneous drilling, non-vascularized and vascularized bone grafting, and various osteotomies have been successful in the majority of properly selected patients over follow-up times of a decade or more. Advances in arthroplasty technologies and techniques, including hip resurfacing and modern
In
The reduced stability of hydroxyapatite (HA)-coated implants in osteopenic conditions is considered to be a major problem. We therefore developed a model of a boosted cementless implantation in osteopenic rats. Twelve-week-old rats were either ovariectomised (OVX) or sham-operated (SO), and after 24 weeks plain or HA-coated implants were inserted. They were treated with either a prostaglandin EP4 receptor agonist (ONO-4819) or saline for one month. The EP4 agonist considerably improved the osteoporosis in the OVX group. Ultrastructural analysis and mechanical testing showed an improvement in the implant-bone attachment in the HA-coated implants, which was further enhanced by the EP4 agonist. Although the stability of the HA-coated implants in the saline-treated OVX rats was less than in the SO normal rats, the administration of the EP4 agonist significantly compensated for this shortage. Our results showed that the osteogenic effect of the EP4 agonist augmented the osteoconductivity of HA and significantly improved the stability of the implant-bone attachment in the osteoporotic rat model.