Abstract. Objective. To estimate the effect of calcar collar contact on periprosthetic fracture mechanics using a collared fully coated cementless femoral stem. Methods. Three groups of six composite femurs were implanted with a fully coated collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Periprosthetic fractures of the femur were simulated using a previously published technique. Fracture torque and rotational displacement were measured and torsional stiffness and rotational work prior to fracture were estimated. High speed video recording identified if collar to calcar contact (CCC) occurred. Results between trials where calcar contact did and did not occur where compared using Mann-Whitney U tests. Results. Where CCC occurred versus where no CCC occurred, fracture torque was greater (47.33 [41.03 to 50.45] Nm versus 38.26 [33.70 to 43.60] Nm, p= 0.05), Rotational displacement was less (0.29 [0.27 to 0.39] rad versus 0.37 [0.33 to 0.49] rad, p= 0.07), torsional stiffness was greater (151.38 [123.04 to 160.42] rad. Nm-1 versus 96.86 [84.65 to 112.98] rad.Nm-1, p <0.01) and rotational work was similar (5.88 [4.67, 6.90] J versus 5.31 [4.40, 6.56] J, p= 0.6). Conclusions. Resistance to fracture and construct stiffness increased when a collared
To estimate the effect of calcar collar separation on the likelihood of calcar collar contact during in vitro periprosthetic fracture. Three groups of six composite femurs were implanted with a collared cementless femoral stem. Neck resection was increased between groups (group 1 = normal, group 2 = 3mm additional, group 3 = 6mm additional), to simulate failure to obtain calcar collar contact. Prior to each trial, the distances between anterior (ACC) and posterior (PCC) collar and the calcar were measured. Periprosthetic fractures of the femur were simulated using a previously published technique. High speed video recording identified when collar to calcar contact (CCC) occurred. The ACC and PCC were compared between trials where the CCC was and was not achieved. Regression estimated the odds of failing to achieve CCC for a given ACC or PCC.Abstract
Objective
Methods
Abstract. Objective. Short-stem total hip arthroplasty (THA) aims to preserve the proximal bone stock for future revisions, so that the first revision should resemble a primary intervention rather than a revision. This study aimed to compare the clinical and radiological outcomes in revision THA after failed short stem versus after failed conventional stem THA. Methods. This study included forty-five patients with revision THA divided into three groups (15 each); group A: revision after short stem, group B: revision after conventional
Total Hip Replacement (THR) is one of the most successful operations in all of medicine, however surgeons just rely on their experience and expertise when choosing between cemented or
Introduction. Ceramic-on-ceramic couplings are an attractive alternative bearing surface to eliminate or reduce problems related to polyethylene wear debris. Past disappointing experiences with alumina-ceramic bearings have led to many improvements in the manufacture and the design of ceramic implants. The purpose of this study was to report the results of contemporary alumina-on-alumina total hip arthroplasties (THAs) with regard to wear, osteolysis, and fracture of the ceramic in patients with osteonecrosis of the femoral head. Methods. Between February 1998 and October 2003, 365 patients (432 hips) with osteonecrosis of the femoral head underwent cementless total hip arthroplasty using contemporary alumina bearings. There were 243 men and 122 women who had a mean age at the time of index operation of 43 years (range, 18 to 65 years). They were evaluated clinically and radiographically at 5 to 10 years (average, 7 years). During the follow-up, special regards were addressed to wear, periprosthetic osteolysis and ceramic failure. Results. The mean Harris hip score was 94 points at the latest follow-up evaluation. All of the prostheses had radiographic evidence of a bone ingrowth. No implant was loosened radiographically and no implant was revised. Ceramic wear was not detectable in 83 hips where differentiation of the femoral head from the cup was possible on radiographs. Periprosthetic osteolysis was observed in no hips. Fracture of the alumina femoral head occurred in 5 hips, and fracture of the alumina liner occurred in 5 hips using sandwich-type ceramic liners. Conclusion. The results of contemporary alumina-on-alumina THAs with a metal-backed socket and a
Summary Statement. In young, active patients cementless THR demonstrates excellent prosthetic stability by RSA and outstanding clinical outcomes at 5 years using a tapered titanium femoral stem, crosslinked polyethylene liners and either titanium or tantalum shells. Introduction. Early femoral implant stability is essential to long-term success in total hip replacement. Radiostereometric analysis (RSA) provides precise measurements of micromotion of the stem relative to the femur that are otherwise not detectable by routine radiographs. This study characterised micromotion of a tapered, cementless femoral stem and tantalum porous-coated vs. titanium acetabular shells in combination with highly cross-linked UHMWPE or conventional polyethylene liners using radiostereometric analysis (RSA) for 5 years following THR. Patients and Methods. This IRB-approved, prospective, double randomised, blinded study, involved 46 patients receiving a primary THR by a single surgeon. Each patient was randomised to receive a titanium (23) (Trilogy, Zimmer) or tantalum (23) (Modular Tantalum shell, Zimmer) uncemented hemispheric shell and either a highly-crosslinked or conventional polyethylene liner. Tantalum RSA markers were implanted in each patient. All patients had a Dorr A or B femoral canal and received a cementless, porous-coated titanium tapered stem (M/L Taper, Zimmer). All final femoral broaches were stable to rotational and longitudinal stress. RSA examinations, Harris Hip, UCLA, WOMAC, SF-12 scores were obtained at 10 days, 6 months, and annually through 5 years. Results. All patients demonstrated statistically significant improvement in Harris Hip, WOMAC, and SF-12 PCS scores post-operatively. Evaluation of polyethylene wear demonstrated that median penetration measurements were significantly greater in the conventional compared to the HXPLE liner cohorts at 1 year through 5 years follow-up (p<0.003). At 5 years, conventional liners showed 0.38 ± 0.05mm vertical wear whereas HXLPE liners showed 0.08 ± 0.02mm (p<0.003). Evaluation of the femoral stems demonstrated that the rate of subsidence was highest in the first 6 months (0.09mm/yr), with no other detectable motion through 5 years. Two outlying patients had significantly higher stem subsidence values at 6 months (0.7 mm and 1.0mm). One stem stabilised without further subsidence after 6 months (0.7mm), and the other stem stabilised at 1 year (1.5mm). Neither patient has clinical evidence of loosening. Evaluation of acetabular shells demonstrated less median vertical translation in tantalum than titanium shells at each time-point except at 3-years follow-up, however due to large standard errors, there was no significant difference between the two designs (p>0.05). These large standard errors were predominantly caused by two outliers, neither of which had clinical evidence of loosening. Discussion/Conclusion. In this RSA study of young THR patients, cementless tapered femoral stems, highly crosslinked polyethylene liners, and tantalum or titanium acetabular shells all demonstrated excellent performance through 5 years follow-up. Highly crosslinked polyethylene liners demonstrated significantly less wear than conventional liners. The femoral stem showed excellent stability through 5 years, with no clinical or radiologic episodes of failure. The small amount of micromotion seen is less than that previously reported for similar tapered,
Bone surface strains were measured in cadaver femora during loading prior to and after resurfacing of the hip and total hip replacement using an uncemented, tapered femoral component. In vitro loading simulated the single-leg stance phase during walking. Strains were measured on the medial and the lateral sides of the proximal aspect and the mid-diaphysis of the femur. Bone surface strains following femoral resurfacing were similar to those in the native femur, except for proximal shear strains, which were significantly less than those in the native femur. Proximomedial strains following total hip replacement were significantly less than those in the native and the resurfaced femur. These results are consistent with previous clinical evidence of bone loss after total hip replacement, and provide support for claims of bone preservation after resurfacing arthroplasty of the hip.
An experimental sheep model was used for impaction allografting of 12 hemiarthroplasty femoral components placed into two equal-sized groups. In group 1, a 50:50 mixture of ApaPore hydroxyapatite bone-graft substitute and allograft was used. In group 2, ApaPore and allograft were mixed in a 90:10 ratio. Both groups were killed at six months. Ground reaction force results demonstrated no significant differences (p >
0.05) between the two groups at 8, 16 and 24 weeks post-operatively, and all animals remained active. The mean bone turnover rates were significantly greater in group 1, at 0.00206 mm/day, compared to group 2 at 0.0013 mm/day (p <
0.05). The results for the area of new bone formation demonstrated no significant differences (p >
0.05) between the two groups. No significant differences were found between the two groups in thickness of the cement mantle (p >
0.05) and percentage ApaPore-bone contact (p >
0.05). The results of this animal study demonstrated that a mixture of ApaPore allograft in a 90:10 ratio was comparable to using a 50:50 mixture.