The initial success of modern total hip arthroplasty can in large part be attributed to the reliable fixation of the femoral component with the use of acrylic bone cement. Early success with cement led to a common pathway of development in North America and the European countries. Much of the early to mid-term research concentrated on refinement of variables related to the methodology and technique of cement fixation. Scandinavian registries were subsequently able to report on improved survivorship with better cementing technique. The net effect has been standardisation towards a small number of cemented implants with good long-term outcomes representing the majority of stems implanted in Sweden, for example. In North America, during the mid-term development of THA in the late 1980's, the term “cement disease” was coined and the cemented THA saw a precipitous decline in use, now to the point where many American orthopaedic residents are completing training never having seen a cemented THA. Modern uncemented femoral components can now claim good long-term survivorship, perhaps now comparable to cemented fixation. However, this has come at a cost with respect to the premium expense applied to the implant itself as well as lineage of failed uncemented constructs. The last several years have seen a proliferation of uncemented implants, usually at a premium cost, with no demonstrated improvement in survivorship. Osteolysis has not been solved with uncemented implants and cement disease has largely been recognised as a misnomer. Long-term outcomes of cemented femoral fixation have consistently demonstrated excellent survivorship, even in the younger age group. Cemented stems allow for variable positioning of the stem to allow for better soft tissue balancing, without the need for proximal modularity. Cemented stems are more forgiving and fail less often secondary to a reduced incidence of intra-operative complications, such as peri-prosthetic fracture. Cemented stems tend to be less expensive and also have the advantage of adding antimicrobial agents into the cement. This is important in emerging markets. The next iteration of orthopaedic innovation driven by the emerging markets may indeed be back to the future. Key Points: The initial success of total hip arthroplasty was based on cemented femoral fixation. Long-term outcomes in the United States demonstrate good results for cemented femoral fixation. Despite this, cemented fixation is not frequently used in the United States. Results from multiple national joint replacement registries demonstrate superior long-term performance of cemented femoral fixation. European countries, perhaps because of the excellent results in the national registries, use cemented femoral fixation more often than not. Cemented femoral fixation is cost neutral if not less expensive and allows for the addition of antimicrobials. Cemented femoral fixation is perhaps easier to perform as the component can be potted in a range of positions as opposed to the position being dictated by the femoral anatomy.
Varus positioning of cemented ‘composite beam’ stems is associated with increased risks of aseptic loosening and stem fracture. We investigated whether the incidence of varus malalignment of the Exeter polished, double taper design in a multicentre prospective study adversely affected outcome after total hip replacement (THR). A multicentre prospective study of 1189 THR was undertaken to investigate whether there is an association between surgical outcome and femoral stem malalignment. The primary outcome measure was the change in the Oxford hip score (OHS) at five years. Secondary outcomes included the rate of dislocation and revision, stem subsidence, quality of cementing. 938 (79.89%) were followed-up at five years.Introduction
Materials & Methods
The orthopaedic market offers more than two hundred different hip femoral stems. Of these, very few have undergone scientific studies with published results. The differences of designs of the stem are mainly related to surface texture and geometry sections. The development of a new cemented hip prosthesis is certainly a very hard task if aiming the improvement of actual performance. This study presents the influence of geometric variables in a novel hip stem concept which was based on the comparison of the performance of the best cemented stems actually in the market. The study was developed using finite element analysis and experiments with in vitro femoral replacements. A numerical simplified model of the hip replacement was designed to generate the final geometry of the femoral stem section. After an in vitro cemented commercial stem was done, with the best cemented stem a Lubinus, Charnley, Stanmore and Müller. Realistic numerical models also allowed us to determine cement mantle stresses of commercial femoral stems that were compared with those obtained for the new concept stem. The new model was then prototyped and tested through in vitro fatigue tests. Finally fatigue tests were also performed to determine the density of cracks in the cement mantles, as well as debonding for both conventional and new designs.Introduction
Materials and Methods
Background.