Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 56 - 56
1 Jul 2020
Tsiapalis D De Pieri A Sallent I Galway N Zeugolis D Galway N Korntner S
Full Access

Cellular therapies play an important role in tendon tissue engineering with tenocytes being described as the most prominent cell population if available in large numbers. However, in vitro expansion of tenocytes in standard culture leads to phenotypic drift and cellular senescence. Recent work suggests that maintenance of tenogenic phenotype in vitro can be achieved by recapitulating different aspects of the native tendon microenvironment. One approach used to modulate the in vitro microenvironment and enhance extracellular matrix (ECM) deposition is macromolecular crowding (MMC). MMC is based on the addition of inert macromolecules to the culture media mimicking the dense extracellular matrix. In addition, as tendon has been described to be a relatively avascular and hypoxic tissue and low oxygen tension can stimulate collagen synthesis and cross-linking, we venture to assess the synergistic effect of MMC and low oxygen tension on human tenocyte phenotype maintenance by enhancing synthesis and deposition of tissue-specific ECM. Human tendons were kindly provided from University Hospital Galway, after obtaining appropriate licenses, ethical approvals and patient consent. Afterwards, tenocytes were extracted using the migration method. Experiments were conducted at passage three. Optimization of MMC conditions was assessed using 50 to 500 μg/ml carrageenan (Sigma Aldrich, UK). For variable oxygen tension cultures, tenocytes were incubated in a Coy Lab (USA) hypoxia chamber. ECM synthesis and deposition were assessed using SDS-PAGE (BioRad, UK) and immunocytochemistry (ABCAM, UK) analysis. Protein analysis for Scleraxis (ABCAM, UK) was performed using western blot. Gene analysis was conducted using a gene array (Roche, Ireland). Cell morphology was assessed using bright-field microscopy. All experiments were performed at least in triplicate. MINITAB (version 16, Minitab, Inc.) was used for statistical analysis. Two-sample t-test for pairwise comparisons and ANOVA for multiple comparisons were conducted. SDS-PAGE and immunocytochemistry analysis demonstrated that human tenocytes treated with the optimal MMC concentration at 2% oxygen tension showed increased synthesis and deposition of collagen type I, the major component of tendon ECM. Moreover, immunocytochemistry for the tendon-specific ECM proteins collagen type III, V, VI and fibronectin illustrated enhanced deposition when cells were treated with MMC at 2% oxygen tension. In addition, protein analysis revealed elevated dexpression of the tendon-specific protein Sclearaxis, while a detailed gene analysis revealed upregulation of tendon-related genes and downregulation of trans-differentiation markers again when cells cultured with MMC at 2% oxygen tension. Finally, low oxygen tension and MMC did not affect the metabolic activity, proliferation and viability of human tenocytes. Collectively, results suggest that the synergistic effect of MMC and low oxygen tension can accelerate the formation of ECM-rich substitutes, which stimulates tenogenic phenotype maintenance. Currently, the addition of substrate aligned topography together with MMC and hypoxia is being investigated in this multifactorial study for the development of an implantable device for tendon regeneration


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 122 - 122
1 May 2012
Xian C McCarty R Gronthos S Chung R Zannettino A Foster B
Full Access

Introduction and aims. Growth plate cartilage is responsible for bone growth in children. Injury to growth plate can often lead to faulty bony repair and bone growth deformities, which represents a significant clinical problem. This work aims to develop a biological treatment. Methods. Recent studies using rabbit models to investigate the efficacy of bone marrow mesenchymal stem cells (MSC) to promote cartilage regeneration and prevent bone defects following growth plate injury have shown promise. However, translational studies in large animal models (such as lambs), which more closely resemble the human condition, are lacking. Results. Very recently, our labs have shown that ovine bone marrow MSC are multipotential and can form cartilage-like tissue when transplanted into mice. However, using a growth plate injury model in lambs, analogous to those described in the rabbit, autologous marrow MSC seeded into gelatine scaffold containing chondrogenic factor TGF-1, failed to promote growth plate regeneration. T o date, no large animal studies have reported successful regeneration of injured growth plate cartilage using MSC highlighting the possibility that ex vivo expanded MSC may not represent a viable cellular therapy for growth plate injury repair. In addition, using a growth plate injury repair model in young rats, our studies have also focused on understanding mechanisms of the faulty repair and identifying potential targets for enhancing growth plate regeneration using endogenous progenitor cells. We have observed that bony repair of injured growth plate is preceded sequentially by inflammatory, fibrogenic, chondrogenic and osteogenic responses involving both intramembranous and endochondral ossification mechanisms. We have observed infiltration of mesenchymal progenitor cells into the injury site, some of which have the potential to differentiate to osteoblasts or chondrocytes and contribute to the bony repair of the injured growth plate. Conclusion. This presentation will focus on our studies examining the efficacy of ex vivo expanded autologous MSC to enhance growth plate regeneration in the ovine model and work using a rat model aimed at identifying potential targets for enhancing cartilage regeneration by mobilising endogenous stromal progenitor cells


Bone & Joint Open
Vol. 1, Issue 10 | Pages 628 - 638
6 Oct 2020
Mott A Mitchell A McDaid C Harden M Grupping R Dean A Byrne A Doherty L Sharma H

Aims

Bone demonstrates good healing capacity, with a variety of strategies being utilized to enhance this healing. One potential strategy that has been suggested is the use of stem cells to accelerate healing.

Methods

The following databases were searched: MEDLINE, CENTRAL, EMBASE, Cochrane Database of Systematic Reviews, WHO-ICTRP, ClinicalTrials.gov, as well as reference checking of included studies. The inclusion criteria for the study were: population (any adults who have sustained a fracture, not including those with pre-existing bone defects); intervention (use of stem cells from any source in the fracture site by any mechanism); and control (fracture healing without the use of stem cells). Studies without a comparator were also included. The outcome was any reported outcomes. The study design was randomized controlled trials, non-randomized or observational studies, and case series.