Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 241 - 241
1 Sep 2012
Field R Rajakulendran K Rushton N
Full Access

Introduction. The MITCH PCR is an anatomic, flexible, horse-shoe shaped acetabular component, with 2 polar fins. The rationale of the PCR cup design is to reproduce a near-physiological stress distribution in the bone adjacent to the prosthesis. The thin composite cup is designed to fuse and flex in harmony with the surrounding bony structure. Only the pathological acetabular cartilage and underlying subchondral bone of the horseshoe-shaped, load-bearing portion of the acetabular socket is replaced, thus preserving viable bone stock. The PCR is manufactured from injection moulded carbon fibre reinforced polyetheretherketone (PEEK), with a two layer outer surface comprising hydroxyapatite and plasma sprayed commercially pure titanium. It is implanted in conjunction with a large diameter low wear femoral head, producing a bearing that will generate minimal wear debris with relatively inert particles. Pre-clinical mechanical testing, finite element analysis and biocompatibility studies have been undertaken. FEA evaluation predicts preservation of host bone density in the load bearing segments. A pilot clinical study was completed on a proto-type version of the PCR cup (the “Cambridge” cup), achieving excellent 5 and 10 year results. Subjects and Methods. We report the three-year results from a two-centre, prospective clinical evaluation study of the MITCH PCR cup. Patient outcome has been assessed using standardised clinical and radiological examinations and validated questionnaires. The change in physical level of activity and quality of life has been assessed using the Oxford Hip Score, Harris Hip score and the EuroQol-5D score, at scheduled time-points. Serial radiographs have been analysed to monitor the fixation and stability of the components. Results and Conclusions. In total 25 PCR cups were implanted by 3 surgeons. There were 12 men and 13 women. The mean patient age at time of surgery was 67 years (range 57–74). An Accolade TMZF stem was used as the femoral component in 19 patients and an Exeter stem in 6. The mean Oxford Hip score improved from 19.8 pre-operatively to 45 at the latest follow-up. The mean Euroqol-5D score improved from 62.6 to 83.6 and the Harris Hip score improved from 49.9 to 90.6. Three adverse events were noted in 2 patients (2 chest infections and 1 deep vein thrombosis). One revision of the acetabular component was performed at 21 months for squeaking. This has been investigated and modification of the articular geometry has resolved the problem on in-vitro testing


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVII | Pages 430 - 430
1 Sep 2012
Brady M Sinz I Kinbrum A Briscoe A
Full Access

Introduction. Patients suffering from finger joint pain or dysfunction due to arthritis and traumatic injury may require arthroplasty and joint replacement. Single-part silicone-based implants remain the material of choice and most widely used option, although reports on their long-term clinical performance are variable. For trauma indications, patients have a high expectation of functionality necessitating the use of materials with high wear resistance and mechanical performance. A new proximal inter phalangeal (PIP) joint designed by Zrinski AG (Wurmlingen, Germany), comprising a self-mating carbon fibre reinforced polyetheretherketone (CFR-PEEK) coupling, may provide a suitable alternative. Here we describe the wear performance of the CFR-PEEK components in a PIP joint wear simulator and subsequent characterisation of the wear particles. Methods. Four proximal and distal PIP components were milled (Zrinski AG) from CFR-PEEK (Invibio Ltd, UK) and subjected to wear testing (Endo Lab ® GmbH, Germany). The test was conducted at 37°C over 5 million cycles in 25% bovine serum (refreshed every 0.5 million cycles). The load was a static force of 63N applied at a frequency of 1Hz with a flexion/extension angle of ±40°. Wear rate was determined by mass loss from each component. Pooled serum samples from the wear simulator were subjected to protein digest and the remaining particulate debris isolated by serial filtration through 10μm, 1μm and 0.1μm filters. Particle size and morphology was subsequently determined by scanning electron microscopy (SEM) (Continuum Blue, UK). Results. Both components exhibited high resistance to wear, with the proximal component resulting in a wear rate of 0.09mg/million cycles, whilst that of the distal component was 0.07mg/million cycles. Particle analysis revealed that the majority of debris generated during the wearing in phase (0.5 million cycles) was <0.5μm in diameter. During the steady state phase (0.5–3 million cycles) a large peak in particle size was observed in the 2μm diameter range, whilst in the latter stage (3–5 million cycles) peaks in particle size were seen at 0.4μm and 2μm. During each stage, both the particle count and aspect ratio remained relatively unchanged. Conclusion. Under these test conditions the CFR-PEEK coupling demonstrated a linear and consistently low wear rate over the 5 million cycle test period, with the majority of particles generated being <2μm in diameter. The low wear rate and biocompatibility demonstrated by CFR-PEEK suggests it is a suitable alternative to silicone in PIP joint prostheses. Acknowledgements. The authors would like to thank Zrinski AG, Christian Kaddick at EndoLab GmbH for the wear simulator work and Mark Yeoman at Continuum Blue Ltd. for particle analysis


Bone & Joint Research
Vol. 6, Issue 4 | Pages 216 - 223
1 Apr 2017
Ang BFH Chen JY Yew AKS Chua SK Chou SM Chia SL Koh JSB Howe TS

Objectives

External fixators are the traditional fixation method of choice for contaminated open fractures. However, patient acceptance is low due to the high profile and therefore physical burden of the constructs. An externalised locking compression plate is a low profile alternative. However, the biomechanical differences have not been assessed. The objective of this study was to evaluate the axial and torsional stiffness of the externalised titanium locking compression plate (ET-LCP), the externalised stainless steel locking compression plate (ESS-LCP) and the unilateral external fixator (UEF).

Methods

A fracture gap model was created to simulate comminuted mid-shaft tibia fractures using synthetic composite bones. Fifteen constructs were stabilised with ET-LCP, ESS-LCP or UEF (five constructs each). The constructs were loaded under both axial and torsional directions to determine construct stiffness.