Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:

Introduction. Patient-specific cutting guides entered into clinical practice few years ago, first introduced in total knee replacement and recently also for other joint replacements. Advantages claimed are improving accuracy and repeatability in implant placement. New patient-specific guides to perform an accurate femoral neck resection and provide a precise alignment reference for acetabular reaming in total hip arthroplasty (THA) were recently developed by Medacta International: MyHip Technology. To date femoral guides can be designed for both anterior and posterior approaches, whereas acetabular guides are available only for posterior approach. Evaluation of the repeatability and reproducibility of MyHip guides placement on cadavers is performed using a navigation system. Accuracy of femoral MyHip guides is evaluated also through one author's clinical experience (RP). Materials and Methods. During each cadaveric session one body (2 hips) was available. A pre-operative CT scan has been obtained and used in order to create the 3D bone model of the pelvis and proximal femurs. Afterwards, a surgical planning for THA has been performed for each case, and, once it was approved by the surgeons, the designed patient-specific blocks were made. Intraobserver and interobserver agreement in positioning the guides was assessed getting measures of femoral head resection height (mm), femoral head plane inclination/anteversion (°) and acetabular reaming axis orientation (°). 9 surgeons, through 2 cadaveric sessions, positioned each guide, removed it and re-positioned it 5 times alternatively. The system is judged as accurate if all measures differ less than 3mm and 5°for lengths and angles respectively from the average among all the acquisitions. Clinical experience includes 68 THA which were performed between March 2014 and April 2015. Anterior femoral MyHip guides were used for the femoral head resection, while the acetabular side was prepared using the standard metal instrumentation for minimally invasive anterior approach. Intra-operative complications, as well post-operative leg length difference and implant positioning are assessed. Results. During cadaveric sessions, all measures taken meet the acceptance criteria with the exception of two measures, which are −5,98° and −5,57°, in femoral head plane anteversion and inclination respectively with femoral anterior guides. Looking at intraobserver variation, MyHip Femoral anterior guide positioning average deviation was between −0.91 mm and 1.44 mm (resection height), −1.25° and 1.41° (anteversion), and −0.85° and 0.82° (inclination); MyHip Femoral posterior guide positioning average deviation was between −0.47 mm and 0.67 mm (resection height), −1.33° and 1.50° (anteversion), −0.66° and 1.50° (inclination); MyHip Acetabular posterior guide had an average z-axis deviation from the mean value between −0.91° and 0.91°. All surgeries were successfully performed. The surgeon feels a good fitting and stability of the guide during each surgery. A preliminary analysis suggests optimal outcomes in terms of accurate prosthetic component positioning and reduction of occurrence of leg length inequality. Conclusion. Cadaveric sessions show intraobserver and intraobserver agreement, demonstrating reproducibility and repeatability in placement of MyHip patient specific cutting guides. Clinical experience confirms the advantages claimed by this technique, suggesting a possible reduction of complications usually linked to implant malpositioning, such as wear, impingement, risk of luxation


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 68 - 68
7 Nov 2023
Hohmann E Paschos N Keough N Molepo M Oberholster A Erbulut D Tetsworth K Glat V Gueorguiev B
Full Access

The purpose of this study was to develop a quality appraisal tool for the assessment of laboratory basic science biomechanical studies.

Materials andScore development comprised of the following phases: item identification/development, item reduction, content/face/criterion validity, weighting, test-retest reliability and internal consistency. For item identification/development, the panel was asked to independently list criteria and factors they considered important for cadaver study and generate items that should be used to appraise cadaver study quality. For content validity, the content validity ratio (CVR) was calculated. The minimum accepted content validity index (CVI) was set to 0.85. For weighting, equal weight for each item was 6.7% [15 items]. Based on these figures the panel was asked to either upscale or downscale the weight for each item ensuring that the final sum for all items was 100%. Face validity was assessed by each panel member using a Likert scale from 1–7. Strong face validity was defined as a mean score of >5. Test-retest reliability was assessed using 10 randomly selected studies. Criterion validity was assessed using the QUACS scale as standard. Internal consistency was assessed using Cronbach's alpha.

Five items reached a CVI of 1 and 10 items a CVI of 0.875. For weighting five items reached a final weight of 10% and ten items 5%. The mean score for face validity was 5.6. Test-retest reliability ranged from 0.78–1.00 with 9 items reaching a perfect score. Criterion validity was 0.76 and considered to be strong. Cronbach's alpha was calculated to be 0.71 indicating acceptable internal consistency.

The new proposed quality score for basic science studies consists of 15 items and has been shown to be reliable, valid and of acceptable internal consistency. It is suggested that this score should be utilised when assessing basic science studies.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 89 - 89
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students.

A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group.

50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356).

In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 9 - 9
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students.

A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group.

50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356).

In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 51 - 51
1 Jul 2020
Vachhani K Whyne C Nam D Wong J Chou J Paul R
Full Access

Rotator cuff tears are the most common cause of shoulder disability, affecting 10% of the population under 60 and 40% of those aged 70 and above. Massive irreparable rotator cuff tears account for 30% of all tears and their management continues to be an orthopaedic challenge. Traditional surgical techniques, that is, tendon transfers are performed to restore shoulder motion, however, they result in varying outcomes of stability and complications. Superior capsular reconstruction (SCR) is a novel technique that has shown promise in restoring shoulder function, albeit in limited studies. To date, there has been no biomechanical comparison between these techniques. This study aims to compare three surgical techniques (SCR, latissimus dorsi tendon transfer and lower trapezius tendon transfer) for irreparable rotator cuff tears with respect to intact cuff control using a clinically relevant biomechanical outcome of rotational motion.

Eight fresh-frozen shoulder specimens with intact rotator cuffs were tested. After dissection of subcutaneous tissue and muscles, each specimen was mounted on a custom shoulder testing apparatus and physiologic loads were applied using a pulley setup. Under 2.2 Nm torque loading maximum internal and external rotation was measured at 0 and 60 degrees of glenohumeral abduction. Repeat testing was conducted after the creation of the cuff tear and subsequent to the three repair techniques. Repeated measures analysis with paired t-test comparisons using Sidak correction was performed to compare the rotational range of motion following each repair technique with respect to each specimen's intact control. P-values of 0.05 were considered significant.

At 0° abduction, internal rotation increased after the tear (intact: 39.6 ± 13.6° vs. tear: 80.5 ± 47.7°, p=0.019). Internal rotation was higher following SCR (52.7 ± 12.9°, intact - SCR 95% CI: −25.28°,-0.95°, p=0.034), trapezius transfer (74.2 ± 25.3°, intact – trapezius transfer: 95% CI: −71.1°, 1.81°, p=0.064), and latissimus transfer (83.5 ± 52.1°, intact – latissimus transfer: 95% CI: −118.3°, 30.5°, p=0.400) than in intact controls. However, internal rotation post SCR yielded the narrowest estimate range close to intact controls. At 60° abduction, internal rotation increased after the tear (intact: 38.7 ± 14.4° vs. tear: 49.5 ± 13°, p=0.005). Internal rotation post SCR did not differ significantly from intact controls (SCR: 49.3 ± 10.1°, intact – SCR: 95% CI: −28°, 6.91°, p=0.38). Trapezius transfer showed a trend toward significantly higher internal rotation (65.7 ± 21.1°, intact – trapezius transfer: 95% CI: −55.7°, 1.7°, p=0.067), while latissimus transfer yielded widely variable rotation angle (65.7 ± 38°, intact – latissimus transfer: 95% CI: −85.9°, 31.9°, p=0.68). There were no significant differences in external rotation for any technique at 0° or 60° abduction.

Preliminary evaluation in this cadaveric biomechanical study provides positive evidence in support of use of SCR as a less morbid surgical option than tendon transfers. The cadaveric nature of this study limits the understanding of the motion to post-operative timepoint and the results herein are relevant for otherwise normal shoulders only. Further clinical evaluation is warranted to understand the long-term outcomes related to shoulder function and stability post SCR.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 15 - 15
1 Dec 2016
Burns D Chahal J Shahrokhi S Henry P Wasserstein D Whyne C Theodoropoulos J Ogilvie-Harris D Dwyer T
Full Access

Anatomic studies have demonstrated that bipolar glenoid and humeral bone loss have a cumulative impact on shoulder instability, and that these defects may engage in functional positions depending on their size, location, and orientation, potentially resulting in failure of stabilisation procedures. Determining which lesions pose a risk for engagement remains a challenge, with Itoi's 3DCT based glenoid track method and arthroscopic assessment being the accepted approaches at this time. The purpose of this study was to investigate the interaction of humeral and glenoid bone defects on shoulder engagement in a cadaveric model. Two alternative approaches to predicting engagement were evaluated; 1) CT scanning the shoulder in abduction and external rotation 2) measurement of Bankart lesion width and a novel parameter, the intact anterior articular angle (IAAA), on conventional 2D multi-plane reformats.

Hill-Sachs and Bony Bankart defects of varying size were created in 12 cadaveric upper limbs, producing 45 bipolar defect combinations. The shoulders were assessed for engagement using cone beam CT in various positions of function, from 30 to 90 degrees of both abduction and external rotation. The humeral and glenoid defects were characterised by measurement of their size, location, and orientation. The abduction external rotation scan and 2D IAAA approaches were compared to the glenoid track method for predicting engagement.

Engagement was predicted by Itoi's glenoid track method in 24 of 45 specimens (53%). The abduction external rotation CT scan performed at 60 degrees of glenohumeral abduction (corresponding to 90 degrees of abduction relative to the trunk) and 90 degrees of external rotation predicted engagement accurately in 43 of 45 specimens (96%), with sensitivity and specificity of 92% and 100% respectively. A logistic model based on Bankart width and IAAA provided a prediction accuracy of 89% with sensitivity and specificity of 91% and 87%. Inter-rater agreement was excellent (Kappa = 1) for classification of engagement on the abduction external rotation CT, and good (intraclass correlation = 0.73) for measurement of IAAA.

Bipolar lesions at risk for engagement can be identified using an abduction external rotation CT scan at 60 degrees of glenohumeral abduction and 90 degrees of external rotation, or by performing 2D measurements of Bankart width and IAAA on conventional CT multi-plane reformats. This information will be useful for peri-operative decision making around surgical techniques for shoulder stabilisation in the setting of bipolar bone defects.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 74 - 74
1 Apr 2019
Giles J Broden C Tempelaere C Rodriguez-Y-Baena F
Full Access

PURPOSE

To validate the efficacy and accuracy of a novel patient specific guide (PSG) and instrumentation system that enables minimally invasive (MI) short stemmed total shoulder arthroplasty (TSA).

MATERIALS AND METHODS

Using Amirthanayagam et al.'s (2017) MI posterior approach reduces incision size and eliminates subscapular transection; however, it precludes glenohumeral dislocation and the use of traditional PSGs and instruments. Therefore, we developed a PSG that guides trans-glenohumeral drilling which simultaneously creates a humeral guide tunnel/working channel and glenoid guide hole by locking the bones together in a pre-operatively planned pose and drilling using a c-shaped drill guide (Figure 1). To implant an Affinis Short TSA system (Mathys GmbH), novel MI instruments were developed (Figure 2) for: humeral head resection, glenoid reaming, glenoid peg hole drilling, impaction of cruciform shaped humeral bone compactors, and impaction of a short humeral stem and ceramic head.

The full MI procedure and instrument system was evaluated in six cadaveric shoulders with osteoarthritis. Accuracy was assessed throughout the procedure: 1) PSG physical registration accuracy, 2) guide hole accuracy, 3) implant placement accuracy. These conditions were assessed using an Optotrak Certus tracking camera (NDI, Waterloo, CA) with comparisons made to the pre-operative plan using a registration process (Besl and McKay, 1992).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 143 - 143
1 Feb 2017
Greene A Hamilton M Polakovic S Andrews R Jones R Parsons I Saadi P Cheung E Flurin P Wright T
Full Access

INTRODUCTION

As computer navigated surgery continues to progress to the forefront of orthopedic care, the application of a navigated total shoulder arthroplasty has yet to appear. However, the accuracy of these systems is debated, as well as the dilemma of placing an accurate tool in an inaccurate hand. Often times a system's accuracy is claimed or validated based on postoperative imaging, but the true positioning is difficult to verify. In this study, a navigation system was used to preoperatively plan, guide, and implant surrogate shoulder glenoid implants and fiducials in nine cadaveric shoulders. A novel method to validate the position of these implants and accuracy of the system was performed using pre and post operative high resolution CT scans, in conjunction with barium sulfate impregnated PEEK surrogate implants.

METHODS

Nine cadaveric shoulders were CT scanned with .5mm slice thickness, and the digital models were incorporated into a preoperative planning software. Five orthopedic shoulder specialists used this software to virtually place aTSA and rTSA glenoid components in two cadavers each (one cadaver was omitted due to incomplete implantation), positioning the components as they best deemed fit. Using a navigation system, each surgeon registered the native cadaveric bone to each respective CT. Each surgeon then used the navigation system to guide him or her through the total shoulder replacement, and implant the barium sulfate impregnated PEEK surrogate implants. Four cylindrical PEEK fiducials were also implanted in each scapula to help triangulate the position of the surrogate implants. Previous efforts were attempted with stainless steel alloy fiducials, but position and image accuracy were limited by CT artifact. BaSO4 PEEK provided the highest resolution on a postoperative CT with as little artifact as possible. All PEEK fiducials and surrogate implants were registered by probing points and planes with the navigation system to capture the digital position. A high resolution post operative CT scan of each specimen was obtained, and variance between the executed surgical plan and PEEK fiducials was calculated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_17 | Pages 14 - 14
1 Nov 2017
Kiran M Jariwala A Wigderowitz C
Full Access

Introduction

The trapezio-metacarpal joint (TMCJ) is subject to constant multiplanar forces and is stabilised by the bony anatomy and ligamentous structures. Ligament reconstruction can correct the hypermobility and potentially prevent osteoarthritis. Eaton and Littler proposed a surgical technique to reconstruct the volar ligamentous support of this joint. In our cadaveric biomechanical study, we aimed to evaluate the resultant effect of this technique on the mobility of the thumb metacarpal.

Materials and method

Seventeen cadaveric hands were prepared and placed on a custom-made jig. Movements at the trapeziometacarpal joint were created using weights. Static digital photographs were taken with intact anterior oblique (AOL) and ulnar collateral ligaments(UCL) and compared with those taken after sectioning these ligaments and following Eaton-Littler reconstructive technique. The photographic records were analyzed using Scion. Image™. Paired T-test was used to establish statistical significance with a p<0.05.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 580 - 580
1 Dec 2013
Wee HB Flint W Armstrong A Lewis G
Full Access

Introduction:

The mechanical stresses and strains surrounding orthopaedic implants can influence bone resorption and formation, micro-fracture, and consequently implant fixation or loosening. Experimental measurement of these internal parameters is generally not feasible. Computational predictions by finite element modeling are promising, but until recently have been limited to assuming the surrounding cancellous bone as a continuous volume, without modeling individual trabeculae. A recent study demonstrated errors in bone-implant stiffness exceeding 100% when using this continuum assumption [1]. Conversely, recently micro-finite element computer models have been built from high resolution imaging of trabecular bone. In the present study we developed such models of central pegs cemented into cadaveric glenoids. We hypothesized that additional applied cement would lead to stronger implant fixation, but less physiologic strains in the trabeculae.

Methods:

Two cadaveric specimens were implanted, with the applied cement volume in the Specimen 2 approximately double that of Specimen 1. The specimens were imaged by micro-computed tomography (vivaCT 40, Scanco, Switzerland) with a resolution of 12 microns. Images were filtered and resampled, then imported in Mimics (Materialise, Belgium) for semi-automated segmentation and 3D reconstruction based on our laboratory's published methods. Finite element models containing 1.7 to 1.8 million elements having sides of 0.1 mm were generated by a direct image voxel-to-element approach [2] (Fig. 1). The material properties of cement and bone were assumed linear elastic (bone: E = 3.5 GPa, cement: E = 3.0 GPa, and implant (UHMWPE): E = 1.3 GPa), and interfaces were assumed fully bonded. All outer walls of the bone were fixed, and a downward force of 250 N was applied to the implant peg. Simulations were run using Abaqus (Simulia, Pawtucket RI) on a 32-core, 1 TB-memory server at PSU's High Performance Computing Systems.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 50 - 50
1 Jan 2016
Hsiao C Tsai Y Yang T Hsu C Tu Y
Full Access

Introduction

Distal femur fracture is a critical issue in orthopedic trauma, because it is difficult to manage especially in cases with intra-articular fracture. Osteoporosis may cause instability of implant and increase complications. Few studies investigate on the stability of distal femur osteoporotic fracture and the behaviors under cycling. Our hypothesis was that the stiffness of construct would decrease as cycling in osteoporotic bone.

Materials and Methods

Seven cadaver specimens were used in this study. Relative bone density for each specimen was evaluated using CT scanning by three known calibration phantoms scanned simultaneously with the specimen. All cadaver specimens were divided normal (group 1) and osteoporosis (group 2) in accordance with the bone density. The titanium distal femur locking plates with 6 screws placed in distal femur condyle and 4 in shaft. A 10 mm gap with 65 mm proximal to the center of articular surface and a vertical fractural line between intra-articular were created to simulate AO C2 type fracture. Each specimen was cyclically loaded in two-phase at a frequency of 2 Hz. Phase 1 was set at 1000 N for 10000 cycles. In phase 2, the load was set at 2000 N for 10000 cycles. Then, the specimen was loaded up to failure at a rate of 5 mm/min. Stiffness was evaluated from the linear portion of load-displacement curve at 2000 cycle interval.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 259 - 259
1 Jun 2012
Yildirim G Walker P Conditt M Horowitz S Madrid I
Full Access

Introduction

The MAKO Surgical Rio Robotic Arm utilizes the pre-op CT images to plan positioning of the uni-condylar and patella-femoral components in order to achieve the most desirable kinematics for the knee joint. We hypothesize that the anatomic matching surfaces and the cruciate retaining design of the Restoris knee will best replicate normal knee kinematics. We tested the healthy cadaveric knee versus the MAKO knee and the most common TKR designs in order to evaluate and compare the kinematic properties.

Methods

Six healthy male left knees were dissected to leave only the knee capsule and the quadriceps tendon intact. The femur and the tibia were cut 20cm from the joint line and potted with cement into a metal housing. The knee was attached to a crouching machine capable of moving the knee joint though its normal human kinematics from extension to maximum flexion, validated in previous studies. Forces applied to the quadriceps tendon allowed the knee to flex and extend physiologically, and springs attached to the posterior were substituted as the hamstrings at a rate of half the force exerted by the quadriceps as shown in the literature. Three dimensional visual targets attached to the bones were tracked by computer software capable of recreating the positions of the bones in any given flexion angle. A cruciate retaining and posterior stabilized TKR design were chosen to represent the TKRs most commonly available in the market today. The intact knee, MAKO implanted knee, CR and PS TKR designs were tested in sequence on the same specimens. The computer software analyzed the normal distance between the bone surfaces and plotted the locations of contact which could then be quantitatively compared for each given scenario [Fig. 1].


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 120 - 120
1 Sep 2012
Shantz JA Leiter J MacDonald PB
Full Access

Purpose

The development of skills in arthroscopic surgery is essential to the training of modern orthopedic surgeons. Few validated, objective tools exist which track improvement in arthroscopic skills. The purpose of this study was to validate an objective global assessment of arthroscopic skills employing videotape footage of diagnostic arthroscopy performed by participants of various skill levels on a cadaveric knee.

Method

A total of 22 participants with varying arthroscopic experience performed a recorded diagnostic knee arthroscopy on a cadaveric knee. Recorded footage of the procedures from an arthroscopic and external view was assessed by five blinded evaluators and scored on a global skills evaluation and checklist evaluation form. Interclass correlation coefficient analyses were used to determine the inter-rater reliability. Mean scores of novice and experienced residents and practicing arthroscopists (based on rank and experience) were compared using a students t-test.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 40 - 40
1 Dec 2017
Giles J Rodriguez y Baena F
Full Access

Patient Specific Instruments (PSIs) are becoming increasingly common in arthroplasty but have only been used with highly invasive surgical approaches that can result in significant complications. We have previously described a novel PSI for minimally invasive total shoulder arthroplasty and shown that it can accurately guide the creation of guide holes in the humerus and scapula. However, conducting shoulder replacement in a minimally invasive environment precludes the use of traditional instruments. In this work, we describe and evaluate the efficacy of a set of novel instruments that, in conjunction with our PSIs, enable accurate minimally invasive total shoulder arthroplasty to be achieved for the first time.

The key components of this surgical procedure are: 1) a new minimally invasive posterior surgical approach that avoids the need for muscle transection; 2) a novel PSI that enables accurate guide tunnels to be simultaneously created in the humerus and scapula using a c- shaped drill guide that mates to the PSI; 3) a custom humeral head resection guide that uses the humeral guide tunnel; 4) a novel reamer and 3D metal printed gear mechanism for radial displaced drilling both powered by a central driver placed through the humeral head; and 5) custom impactors for glenoid and humeral implantation – the latter is achieved using a modular slap hammer that is guided by the central humeral drill hole. Accuracy of this system was assessed at each surgical step using an optical tracking camera and an iterative closest point registration method to map measurements to the pre-operative plan.

The accuracy results for the physical PSI registration and guide hole drilling were found to be in line with our previously reported results: the intra-articular guide hole locations were 2.2mm and 3.9mm for the humerus and glenoid with angular errors of 2.8° and 8°, respectively. After humeral resection, the humeral cut plane had an angular error of 10.1°. The final humeral implant location had an error of 12.1° and 1.9mm. For the glenoid implant, the positional error was 3.8mm with angular errors of 3.3° ante-retroversion and 8.6° supero- inferior inclination.

We believe that these initial results demonstrate that this minimally invasive PSI and instrumentation system can accurately guide total shoulder replacement while avoiding the complications of open surgery. A full cadaveric testing series is currently being completed.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 397 - 397
1 Dec 2013
Levy J Keppler L Verborgt O Declercq G Frankle M
Full Access

Background and Motivation

Accurate placement of glenoid components in reverse and total shoulder arthroplasty has been shown to reduce the risk of implant failure (1, 2, 6). Surgical techniques and literature describe methods to determine favorable positions for implant placement (3, 4, 5) but achieving that position surgically remains a challenge. Placement of glenoid components is faced with the challenge of variable glenoid morphology on which conventional instrumentation does not always provide a reliable reference (6, 7, 8). Limited surgical exposure is another challenge since many anatomic landmarks are not visible to the surgeon to use as spacial reference. Anatomic landmarks and angles can be more reliabily selected on CT scans with 3-dimentional reconstruction (9,10) yet few methods allow for the reproducible translation of these plans to surgery. Navigation has produced better accuracy and lower variability than conventional instrumentation (11), yet its regular usage remains limited, especially in the shoulder.

Methods

A patient specific planning and guiding system has been developed for glenoid implant placement of total and reverse shoulder arthoplasty procedures. This method allows for preoperative planning on a patient specific virtual 3D model of the scapula derived from CT images (Figure 1), and guided placement of a pin which which serves as the central axis for determining proper implant position. An initial implant position was presented on the virtual model based on the methods described by the surgical technique of the corresponding procedure. These plans were either approved or adapted to a desired position within the planning software by the surgeons. Using this planned position as input, patient specific surgical guides were created which fit onto the exposed anatomy and guide the drilling of the pin (Figure 1). This method was tested on 14 cadavers, with attention directed to translation of the starting point from the original plan, the ability to reproduce the intended degree of inferior tilt, and the ability to reproduce the glenoid version angle.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 90 - 90
1 May 2016
Zheng G Nolte L Jaramaz B
Full Access

Introduction

In clinical routine surgeons depend largely on 2D x-ray radiographs and their experience to plan and evaluate surgical interventions around the knee joint. Numerous studies have shown that pure 2D x-ray radiography based measurements are not accurate due to the error in determining accurate radiography magnification and the projection characteristics of 2D radiographs. Using 2D x-ray radiographs to plan 3D knee joint surgery may lead to component misalignment in Total Knee Arthroplasty (TKA) or to over- or under-correction of the mechanical axis in Lower Extremity Osteotomy (LEO).

Recently we developed a personalized X-ray reconstruction-based planning and post-operative treatment evaluation system called “iLeg” for TKA or LEO. Based on a patented X-ray image calibration cage and a unique 2D–3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of cadavers.

Methods

CT data of 12 cadavers (24 legs) were used in the study. For each leg, two DRRs, one from the antero-posterior (AP) direction and the other from the later-medial (LM) direction, were generated following clinical requirements and used as the input to the iLeg software. The 2D–3D reconstruction was then done by non-rigidly matching statistical shape models (SSMs) of both femur and tibia to the DRRs (seee Fig. 1).

In order to evaluate the 2D–3D reconstruction accuracy, we conducted a semi-automatic segmentation of all CT data using the commercial software Amira (FEI Corporate, Oregon, USA). The reconstructed surface models of each leg were then compared with the surface models segmented from the associated CT data. Since the DRRs were generated from the associated CT data, the surface models were reconstructed in the local coordinate system of the CT data. Thus, we can directly compare the reconstructed surface models with the surface models segmented from the associated CT data, which we took as the ground truth. Again, we used the software Amira to compute distances from each vertex on the reconstructed surface models to the associated ground truth models.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 30 - 30
1 Feb 2016
Zheng G Akcoltekin A Schumann S Nolte L Jaramaz B
Full Access

Recently we developed a personalised X-ray reconstruction-based planning and post-operative treatment evaluation system called iLeg for total knee arthroplasty or lower extremity osteotomy. Based on a patented X-ray image calibration cage and a unique 2D-3D reconstruction technique, iLeg can generate accurate patient-specific 3D models of a complete lower extremity from two standing X-rays for true 3D planning and evaluation of surgical interventions at the knee joint. The goal of this study is to validate the accuracy of this newly developed system using digitally reconstructed radiographs (DRRs) generated from CT data of 12 cadavers (24 legs). Our experimental results demonstrated an overall reconstruction accuracy of 1.3±0.2mm.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 62 - 62
1 Mar 2013
Eun SS Lee WC Lee SH Il Hwang Y
Full Access

The purpose of this study was to obtain anatomical measurements of the distal tibia and talus of Korean ankles and to evaluate, based on those measurements, the compatibility of the HINTEGRA prostheses in the context of total ankle replacement (TAR). We measured the length, width, height, and angles of the distal tibia and talus of 51 cadavers and compared these measurements with the corresponding dimensions of the HINTEGRA prostheses. The male ankles were larger than the female ones as was expected, but their overall shapes did not differ, which fact validates use of the prostheses irrespective of patients' sex. The dimensions of the talus itself did not differ significantly from those previously reported for American whites and blacks and South African whites. This might suggest a possibility that the HINTEGRA prostheses, being used in these countries, would be compatible to Korean ankles, too. In fact, the length range of the talar components was generally compatible with those derived from cadaveric measurements of the trochlea. However, the widths of the tibial and talar components were not completely compatible to Korean ankles. Above all, the length of the large-sized tibial components was much longer than the largest ankles, which would confine the choice of prosthesis mainly to small-sized ones for arthroplasty in Korea. Even though these prostheses are currently used, some modifications are needed to extend their usability in Korea, such as shortening and width/length ratio adjustment of the tibial component, and of the talar component accordingly.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 46 - 46
1 Sep 2012
Hozack W Nogler M Callopy D Mayr E Deirmengian G Sekyra K
Full Access

INTRODUCTION

While standard instrumentation tries to reproduce mechanical axes based on mechanical alignment guides, a new “shape matching” system derives its plan from kinematic measurements using pre-operative MRIs. The current study aimed to compare the resultant alignment in a matched pair cadaveric study between the Shape Match and a standard mechanical system.

METHODS

A prospective series of Twelve (12) eviscerated torso's were acquired for a total of twenty four (24) limb specimens that included intact pelvises, femoral heads, knees, and ankles. The cadavers received MRI-scans, which were used to manufacture the Shape Match cutting guides. Additionally all specimen received “pre-operative” CT-scans to determine leg axes. Two (2) investigating surgeons performed total knee arthroplasties on randomly chosen sides by following the surgical technique using conventional instruments. On the contralateral sides, implantation of the same prosthesis was done using the Kinematic Shape Match Cutting Guides. A navigation system was used to check for leg alignement. Implant alignement was determined using post-operative CT-scans. For statistical analysis SPSS was used.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 35 - 35
1 Dec 2017
Bosma S Jutte P Wong K Paul L Gerbers J
Full Access

Computer Assisted Surgery (CAS) and Patient Specific Instrumentation (PSI) have been reported to increase accuracy and predictability of tumour resections. The technically demanding joint-preserving surgery that retains the native joint with the better function may benefit from the new techniques. This cadaver study is to investigate the surgical accuracy of CAS and PSI in joint-preserving surgery of knee joint.

CT scans of four cadavers were performed and imported into an engineering software (MIMICS, Materialise) for the 3D surgical planning of simulated, multiplanar joint-preserving resections for distal femur or proximal tibia metaphyseal bone sarcoma. The planned resections were transferred to the navigation system (OrthoMap 3D, Stryker) for navigation planning and used for the design and fabrication of the PSI. Each of the four techniques (freehand, CAS, PSI and CAS + PSI) was used in four joint-preserving resections. Location accuracy (the maximum deviation of distance between the planned and the achieved resections) and bone resection time were measured. The results were compared by using t-test (statistically significant if P< 0.05).

Both the CAS+PSI and PSI techniques could reproduce the planned resections with a mean location accuracy of < 2 mm, compared to 3.6 mm for CAS assistance and 9.2 mm for the freehand technique. There was no statistical difference in location accuracy between the CAS+PSI and the PSI techniques (p=0.92) but a significant difference between the CAS technique and the CAS+PSI (p=0.042) or PSI technique (p=0.034) and the freehand technique with the other assisted techniques. The PSI technique took the lowest mean time of 4.78 ±0.97min for bone resections. This was significantly different from the CAS+PSI technique (mean 12.78 min; p < 0.001) and the CAS technique (mean 16.97 min; p = < 0.001).

CAS and PSI assisted techniques help reproduce the planned multiplanar resections. The PSI technique could achieve the most accurate bone resections (within 2mm error) with the least time for bone resections. Combining CAS with PSI might not improve surgical accuracy and might increase bone resection time. However, PSI placement on the bone surface depends only on the subjective feeling of surgeons and may not apply if the extraosseous tumor component is large. Combining CAS with PSI could address the limitations.