Autogenous bone grafting limitations have motivated the development of Tissue-Engineered (TE) biomaterials that offer an alternative as bone void fillers. However, the lack of a blood supply within implanted constructs may result in avascular necrosis and construct failure. 1. The aim of this project was to investigate the potential of novel TE constructs to promote vascularisation and
Hydroxyapatite and poly-L-lactide (HA/PLLA) composites are osteoconductive and biodegradable. They have already been used clinically to treat fractured bones by inducing osteosynthesis and serving as the bone filling material. During revision of total hip arthroplasty, we have grafted bone onto the bone defect and covered it with an HA/PLLA mesh instead of using a metal mesh on the non-load bearing portion of the cup (Figure 1). However, whether the interface between the HA/PLLA and the titanium alloy cup was stable remains unclear. The purpose of this study was to determine and compare the histological osteoconductivity and osteoinductivity of HA/PLLA and titanium alloy.Introduction
Objectives
Purpose. The posterolateral or posterior approach for total hip arthroplasty has the advantages of preserving the hip abductor musculature and providing good visualization during femoral preparation and component insertion. Although posterolateral approach is one of the popular approaches in hip arthroplasty, it has been reported high dislocation rate as a drawback. To compensate the drawback the repair of short external rotator of hip is thought to be important. Therefore, we investigated incidence of failed repaired short external rotator muscles, dislocation rate and time of failure between tendon to tendon and tendon to
Fracture non-union can be as high as 20% in certain clinical scenarios and has a high associated socioeconomic burden. Boron has been shown to regulate the Wnt/β-catenin pathway in other bodily processes. However, this pathway is also critical for bone healing. Here we aim to demonstrate that the local delivery of boric acid can accelerate bone healing, as well as to elucidate how boric acid, via the regulationtheWnt/β-catenin pathway, impacts theosteogenic response of bone-derived osteoclasts and osteoblasts during each phase of
Bone regeneration includes a well-orchestrated series of biological events of bone induction and conduction. Among them, the Wnt/β-catenin signaling pathway is critical for bone regeneration. Being involved in several developmental processes, Wnt/β-catenin signaling must be safely targeted. There are currently only few specific therapeutic agents which are FDA-approved and already entered clinical trials. A published work has shown that Tideglusib, a selective and irreversible small molecule non-ATP-competitive glycogen synthase kinase 3-β(GSK-3β) inhibitor currently in trial for Alzheimer's patients, can promote tooth growth and repair cavities. [1]Despite some differences, they are some similarities between bone and tooth formation and we hypothesise that this new drug could represent a new avenue to stimulate bone healing. In this work, we locally delivered Tideglusib (GSK3β inhibitor) in the repair of femoral cortical window defects and investigated bone regeneration. A biodegradable FDA-approved collagen sponge was soaked in GSK-3βinhibitor solution or vehicle only (DMSO) and was implanted in 1 × 2 mm unicortical defects created in femora of 35 adult wild-type male mice.
Age-related fragility fractures are highly correlated with the loss of bone integrity and deteriorated morphology of the osteocytes. Previous studies have reported low-magnitude high-frequency vibration(LMHFV) promotes osteoporotic diaphyseal fracture healing to a greater extent than in age-matched normal fracture healing, yet how osteoporotic fractured bone responds to the mechanical signal has not been explored. As osteocytes are prominent for mechanosensing and initiating
Disorders of bone integrity carry a high global disease burden, frequently requiring intervention, but there is a paucity of methods capable of noninvasive real-time assessment. Here we show that miniaturized handheld near-infrared spectroscopy (NIRS) scans, operated via a smartphone, can assess structural human bone properties in under three seconds. A hand-held NIR spectrometer was used to scan bone samples from 20 patients and predict: bone volume fraction (BV/TV); and trabecular (Tb) and cortical (Ct) thickness (Th), porosity (Po), and spacing (Sp).Aims
Methods
We prospectively studied 25 cases of chom (15 femora and 10 tibia). There were 24 males and one female, with the mean age being 33 years (range, 21–58 years). All patients had radiological evidence of chronic osteomyelitis with osteolysis, cortical thinning, sequestration, involucrum, and both medullary and soft tissue swelling. All patients had culture-documented chronic osteomyelitis. The clinical records, radiographs,
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately, we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately, we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of
Implants without diaphyseal-fixed stems. The femoral component is removed first. Whether the implants are fixed with cement or osteointegration, the principles are the same. The interface between the metal implant and bone or cement is freed using both osteotome and saw. All interfaces are cut loose before the implant is driven off with either a hand-held driver and hammer or slap-hammer. Driving off the femoral component before it has been completely loosened removes excessive amounts of bone or causes major condylar fracture. The polyethylene component is removed next, and then the tibial component. If the tibial component has no metaphyseal stem, the interfaces are separated directly with osteotome and saw until the tibial component is completely loose. If the tibial component has a metaphyseal stem, it usually requires a direct approach to the stem through a tibial osteotomy to loosen the stem from the cement mantle or bone attachment. If a tibial tubercle osteotomy is used to expose the knee, direct access can be obtained through the osteotomy to expose the attached interfaces. Several cuts with the osteotome will loosen the cement from the stem and allow the tibial component to be lifted from the tibial surface. Special care is taken to ensure that the posterior portion of the tibial surface is completely loosened from the bone before final removal is done. Driving tools and slap-hammers almost never are needed on the tibial component without a diaphyseal stem. Implants with diaphyseal-fixed stems. Well-fixed diaphyseal stems are special challenges and often require bivalve osteotomy of the metaphysis and diaphysis to gain exposure. A sterile tourniquet is an important consideration for femoral stems that likely will require bivalve osteotomy. Preserving blood supply to both sides of the osteotomy can be achieved by maintaining a medial or lateral soft tissue hinge. A drill is used to penetrate the cortex and find the end of the stem, and then the oscillating saw is used to make a longitudinal cut along the medial side of the bone past the tip of the stem. A saw cut is made transversely at this level across the anterior surface of the diaphysis. Next the lateral side of the diaphysis and metaphysis is perforated multiple times with the drill bit and curved ¼-inch osteotome, leaving the periosteal attachment intact to the anterior bone flap. The bone flap then is carefully pried loose from the anterior surface of the stem. This exposes the stem in the posterior portion of the bone. The interfaces then can be carefully separated from the stem, allowing it to be lifted from the
Bone is a dynamic organ with remarkable regenerative properties seen only otherwise in the liver. However, bone healing requires vascularity, stability, growth factors, a matrix for growth, and viable cells to obtain effective osteosynthesis. We rely on these principles not only to heal fractures, but also achieve healing of benign bone defects. Unfortunately we are regularly confronted with situations where the local environment and tissue is insufficient and we must rely on our “biologic tool box.” When the process of
Osteocytes (OCY) are the end stage differentiation cells of the osteoblast lineage, and are incorporated in the bone matrix during bone formation. In doing so, OCY control the mineralisation of osteoid. OCY form a dense inter-connected network of cell bodies and cell processes throughout the mineralised matrix of bone. OCY viability depends on interstitial fluid flow along the OCY canaliculi, driven by pulsatile blood flow and loading of the skeleton. Maintenance of the density and viability of OCY are essential for bone health because OCY perform many important functions in bone. Firstly, OCY appear to initiate
Purpose. Platelet-derived growth factor-BB (PDGF-BB) is a well characterized wound healing protein known to be chemotactic and mitogenic for cells of mesenchymal origin, including osteoblasts and chondrocytes. Biocompatible scaffolds, combined with growth factors such as PDGF-BB, have potential to stimulate regeneration and repair of osseous and cartilaginous tissues. The purpose of this study was to determine the efficacy and safety of recombinant human PDGF-BB (rhPDGF-BB) combined with a collagen implant to augment healing of osteochondral defects. Method. A single osteochondral defect (8mm x 8mm) was created in the medial femoral condyle of 32 adult goats. Collagen implants(8.5mm x 8mm) hydrated with four doses of rhPDGF-BB (0g, 15g, 75g, 500g) were press-fit into the defect. Defects in four animals were left untreated. All goats were sacrificed 12 weeks postoperatively. Macroscopic evaluation and quantitative CT analyses were performed. Histologic sections were stained with Safranin O/Fast Green and assessed with a modified ODriscoll scoring scale for cartilage and
Purpose. Angiogenesis and osteogenesis are essential for bone growth, fracture repair, and bone remodeling. VEGF has an important role in
A new surgical hybrid technique involving the combination of autologous bone plug(s) and autologous chondrocyte implantation (AOsP-ACI) was used and evaluated as a treatment option in 15 patients for repair of large osteochondral defects in knee (N=12) and hip joints (N=3). Autologous Osplugs were used to contour the articular surface and the autologous chondrocytes were injected underneath a biological membrane covering the plug. The average size of the osteochondral defects treated was 4.5cm. 2. The average depth of the bone defect was 26mm. The patients had a significant improvement in their clinical symptoms at 12 months with significant increase in the Lysholm Score and Harris Hip Score (p = 0.031). The repaired tissue was evaluated using Magnetic Resonance Imaging, Computerised Tomography, arthroscopy, histology and immunohistochemistry (for expression of type I and II collagen). Magnetic Resonance Imaging, Computerised Tomography and histology at 12 months revealed that the bone plug became well integrated with the host
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement Cite this article:
The purpose of this study was to evaluate A total of 60 Sprague-Dawley rats (125 g to 149 g) were implanted
subcutaneously with SWCNT/PLAGA composites (10 mg SWCNT and 1gm
PLAGA 12 mm diameter two-dimensional disks), and at two, four, eight
and 12 weeks post-implantation were compared with control (Sham)
and PLAGA (five rats per group/point in time). Rats were observed
for signs of morbidity, overt toxicity, weight gain and food consumption,
while haematology, urinalysis and histopathology were completed
when the animals were killed.Objectives
Methods