Aims. To report the development of the technique for minimally invasive lumbar decompression using robotic-assisted navigation. Methods. Robotic planning software was used to map out
Retrospective review of blood loss during posterior instrumented fusion in Adult Deformity Surgery before and after the introduction of the ultrasonic bone cutter into routine surgical technique. We retrospectively reviewed a large series of adult patients undergoing four or more levels of posterior instrumented fusion (+/− osteotomies/decompressions) over an eight year period. The senior surgeon (SM) switched to using the ultrasonic bone cutter instead of conventional cutting techniques at a specific point in time. We reviewed the clinical records of cases performed both before and after this time point and were able to identify blood loss from the clinical records. We reviewed actual blood loss by evaluating several aspects, including suction volumes, swab weights, re-infusion volumes, pre- and post- operative haemoglobin values and the type and amount of haemostatic agents used. We demonstrated that a significant reduction in blood loss intra-operatively occurred with reduced use of haemostatic agents following introduction of the ultrasonic bone cutter as the method of
Costoplasty remains useful in the treatment of adolescent idiopathic scoliosis, rib hump and associated chest wall deformities. However traditional costoplasty increases morbidity and blood loss. We examine the feasibility and possible effectiveness of a more conservative costoplasty using an animal model. 4 fresh half Ovine rib cages from separate animals were obtained, stored at +4 °C and warmed to room temperature before testing. Each rib cage was randomly assigned to group 1, 2, 3 or 4. Ribs 2–10 were dissected out for testing. The ribs then underwent stepwise deconstruction according to their group. Beginning at the convexity, removing first the convex cortex, then the cancellous, then the cranial and caudal cortices to leave just the concave cortex. Testing for stiffness was by three-point bending on the concave side of each rib with the rib fixed at the head of the rib and 5 cm from the resected area. The ribs were deformed at a constant rate of 0.5 mm.sec . −. 1 up to a maximum load of 9.99 kg or until fracturing. Then stress was plotted against strain to find the Young's modulus of each group and statistics carried out with an ANOVA test. The ribs in each group were as follows: Group 1= control, group 2= 30 mm long convex side cortical bone removed 10 mm from lateral tubercle, group 3= convex, cortical and cancellous