During remodelling, osteoclasts produce discrete bone cavities filled with bone and this is associated with the dimensions of the cavity. The aim of this study is to investigate the effect of pores of similar size to those produced by osteoclasts on the morphology, proliferation and osteogenic differentiation of
Although success has been achieved with implantation of
3D Printed polyether-ether-ketone (PEEK) has gained widespread use in clinical practice due to its excellent biocompatibility, biomechanical compatibility, and personalization. However, pre-printed PEEK implants are not without their flaws, including bioinert, optimization distortion of 3D printing digital model and prosthetic mismatching. Recent advancements in mechanical processing technology have made it possible to print bone implants with PEEK fused deposition, allowing for the construction of mechanically adaptable implants. In this study, we aimed to synthesize silanized polycitrate (PCS) via thermal polymerization and in situ graft it to PEEK surface to construct an elastomer coating for 3D printed PEEK implants (PEEK-PCS). This incorporation of PCS allows the implant to exhibit adaptive space filling ability and stress dispersal. In vivo and in vitro results, PEEK-PCS exhibited exceptional osseointegration and osteogenesis properties along with macrophage M2 phenotypic polarization, inflammatory factors reducing, promotion of osteogenic differentiation in
Stem cell therapy is an effective means to address the repair of large segmental bone defects. However, the intense inflammatory response triggered by the implants severely impairs stem cell differentiation and tissue regeneration. High-dose transforming growth factor β1 (TGF-β1), the most locally expressed cytokine in implants, inhibits osteogenic differentiation of
Osteoporosis is a common problem in postmenopausal women and the elderly. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates glucocorticoids (GCs) in vivo, which is a considerable potential target as treatment for osteoporosis. Previous studies have demonstrated its effect on osteogenesis, and our study aimed to demonstrate its effect on osteoclast activation. In vivo, we used 11β-HSD1 knock-off (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, In vivo, We used 11β-HSD1 knockoff (KO) and C57BL6/J mice to undergo the ovariectomy-induced osteoporosis (OVX). In vitro, bone marrow-derived macrophages (BMM) and
In 2021 the bone grafting market was worth €2.72 billion globally. As allograft bone has a limited supply and risk of disease transmission, the demand for synthetic grafting substitutes (BGS) continues to grow while allograft bone grafts steadily decrease. Synthetic BGS are low in mechanical strength and bioactivity, inspiring the development of novel grafting materials, a traditionally laborious and expensive process. Here a novel BGS derived from sustainably grown coral was evaluated. Coral-derived scaffolds are a natural calcium carbonate bio-ceramic, which induces osteogenesis in
The novel, highly-sensitive and non-destructive method for the quantification of the osteogenic potential of
Objectives. Mesenchymal stem cells have the ability to differentiate into various cell types, and thus have emerged as promising alternatives to chondrocytes in cell-based cartilage repair methods. The aim of this experimental study was to investigate the effect of
Familial osteochondritis dissecans (FOCD) is an inherited defect of cartilage and bone characterized by development of large cartilage lesions in multiple joints, short stature and early onset osteoarthritis. We have studied a family from Northern Sweden with FOCD over five generations. All affected family members have a heterozygous missense mutation on exon 17 of the aggrecan gene, resulting in a Val-Met amino acid replacement in the G3 aggrecan C-type lectin domain (CLD). Aggrecan, a major proteoglycan of articular cartilage produced by chondrocytes, has a large protein core richly substituted with sulfated glycosaminoglycan chains. The unique structure, its high concentration within the cartilage extracellular matrix and its ability to form a supermolecular complex with hyaluronan and bind to other matrix proteins all profoundly influence the biomechanical properties of the tissue. Deletion of CLD in a chick aggrecan construct was found to influence its secretion from chondrocytes and human aggrecan constructs carrying the V2303M mutation showed diminished interactions with the ECM proteins tenascin-R, fibulin-1 and fibulin-2. To investigate the pathogenesis of FOCD, we studied chondrogenic differentiation of patient
The human amniotic membrane (hAM) may be helpful as a support for bone regeneration. To assess its potential for bone repair, a wide heterogeneity of preservation methods of hAM has been studied. The objectives of this study were: i) to assess bone regeneration potential of fresh versus cryopreserved hAM, and ii) to characterize hAM depending on four preservation methods. hAM was used either fresh (F-hAM), cryopreserved (C-hAM), lyophilized (L-hAM) or decellularized and lyophilized (DL-hAM). First, critical calvarial bone defects were performed in mice. Defects remained empty or were covered by F-hAM or C-hAM. Then, the cytotoxicity of the four preservation methods of hAM was assessed in vitro on human
Introduction. Cell-based tendon engineering is an attractive alternative therapeutic approach to established treatments of tendon injuries. Numerous cell types are promising source of tendon engineering; however, there are certain disadvantages for each cell type. Interestingly, dermal fibroblasts (DFs) are able to transdifferentiate into other cell types, they are widely distributed in dermis and easy to harvest and isolate. Furthermore, pilot clinical studies suggested a promising therapeutic potential of autologous DFs for discorded tendons (Connell et al., 2009&2011), but the underlining repair mechanisms remain unclarified. To investigate tenogenic differentiation process in great detail, we have previously established a three-dimensional (3D) cell sheet model, comprising of three consecutive step (expansion, stimulation and maturation) leading to the formation of 3D tendon-like tube (Hsieh et al., 2018; Yan et al., 2020). Hence, the aim of this study was to carry out pilot examination of the tenogenic potential of human DFs (hDFs) by implementing the 3D cell sheet model. Methods. hDFs (company purchased, n=2), hBMSCs (human
Current cell-based tissue engineering strategies have limited clinical applicability due to the need for large cell numbers and prolonged culture periods that lead to phenotypic drift. In vitro microenvironmental modulators have been proposed to mimic the native tendon. Standard in vitro culture conditions result in delayed extracellular matrix (ECM) deposition, impairing the development of scaffold-free approaches. ECM deposition can be enhanced by macromolecular crowding (MMC), a biophysical phenomenon that governs the milieu of multicellular organisms. We assessed a multifactorial biophysical approach, using MMC and mechanical loading, on different cell sources to determine their suitability for in vitro fabrication of tendon-like tissue. Human dermal fibroblasts (DFs), tenocytes (TCs) and
The successful application of smart implantable devices requires materials used to easily adapt and respond to their microenvironment via physical and chemical cues. Nanotopography, a known important factor in cellular processes (i.e. cellular adhesion, proliferation, and, differentiation), has become a central approach to imparting clinically relevant materials with bioactive and biomimetic properties. This work focuses on the use of Directed irradiation synthesis (DIS), to create nanostructures on dissimilar materials including surfaces of metals, semiconductors, and polymers. DIS is a novel method that allows for the tuning of both surface nanoscale topography and surface chemistry through the tailoring of ion beam parameters, including energy and fluence. The application of DIS to direct cellular interactions on Ti6Al4V, MgAZ31, and PEEK is presented. Topography and chemistry changes at the nanoscale were characterized by SEM, XPS, AFM, and Contact Angle. In vitro tests were performed using macrophages (JJ741A) and human aortic and
The selection of a proper material to be used as a scaffold or as a hydrogel to support, hold or encapsulate cells is both a critical and a difficult choice that will determine the success of failure of any tissue engineering and regenerative medicine (TERM) strategy. We believe that the use of natural origin polymers, including a wide range of marine origin materials, is the best option for many different approaches that allow for the regeneration of different tissues. In addition to the selection of appropriate material systems it is of outmost importance the development of processing methodologies that allow for the production of adequate scaffolds/matrices, in many cases incorporating bioactive/differentiation agents in their structures. An adequate cell source should be selected. In many cases efficient cell isolation, expansion and differentiation, and in many cases the selection of a specific sub-population, methodologies should be developed and optimized. We have been using different human cell sources namely:
Phenotypic drift of stem cells and insufficient production of extracellular matrix (ECM) are frequently observed in tissue-engineered cartilage substitutes, posing major weaknesses of clinically relevant therapies targeting cartilage repair. Microenvironment plays an important role for stem cell maintenance and differentiation and therefore an optimal chondrogenic differentiation protocol is highly desirable. Macromolecular crowding (MMC) is a biophysical phenomenon that accelerates biological processes by several orders of magnitude. MMC was recently shown to significantly increase ECM deposition and to promote chondrogenic differentiation of stem cells. We hypothesise that the addition of sulphated high-molecular weight polysaccharides (carrageenan) to the media positively affects stem cell maintenance and chondrogenic differentiation. Herein, we venture to assess the impact of MMC on the maintenance of stem cell phenotype and multipotency, and ECM deposition in xeno-free human
Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and introduction of different chemical linkages and end-groups widens the scope of the materials due to a range of mechanical properties. The aim of our work is to investigate novel TATO based materials, with or without hydroxyapatite filler, for their potential in bone tissue engineering constructs. Initially the biocompatibility of the materials was tested, indirectly and directly, according to ISO standards. Following this the osteoconductive properties were investigated with primary osteoblasts and an osteoblastic cell line.
Introduction. The incidences of fragility fractures, often because of osteoporosis, are increasing. Research has moved towards bioresorbable scaffolds that provide temporary mechanical stability and promote osteogenesis. This research aims to fabricate a 3D printed composite Poly (l-lactic-co-glycolic acid)-strontium doped tricalcium phosphate (PLGA-SrTCP) scaffold and evaluate in an in vitro co culture study containing osteoporotic donor cells. Method. PLGA, PLGA TCP, and PLGA SrTCP scaffolds were produced using Fused Filament Fabrication (FFF). A four-group 35-day cell culture study was carried out using human
Cell-based tissue engineering strategies for tendon repair have limited clinical applicability due to delayed extracellular matrix (ECM) deposition and subsequent prolonged culture periods, which lead to tenogenic phenotypic drift. Deposition of ECM in vitrocan be enhanced by macromolecular crowding (MMC), a biophysical phenomenon that governs the intra- and extra-cellular milieu of multicellular organisms. 2. , which has been described to accelerate ECM deposition in human tenocytes. 1. A variety of cell sources have been studied for tendon repair including tenocytes, dermal fibroblasts and mesenchymal stem cells (MSCs). 3. and various biophysical, biochemical and biological tools have been used to mimic tendon microenvironment and induce phenotype maintenance in long term cultures or differentiation. 4. Therefore, we propose to assess the combined effect of macromolecular crowding and mechanical loading on different cell sources to determine their suitability for the in vitro fabrication of tendon-like tissue. Human dermal fibroblasts, tenocytes and
INTRODUCTION.
We developed a 3D vascularized bone remodeling model embedding human osteoblast and osteoclast precursors and endothelial cells in a mineralized matrix. All the cells included in the model exerted their function, resulting in a vascularized system undergoing mineralized matrix remodeling. Bone remodeling is a dynamic process relying on the balance between the activity of osteoblasts and osteoclasts which are responsible for bone formation and resorption, respectively. This process is also characterized by a tight coupling between osteogenesis and angiogenesis, indicating the existence of a complex cross-talk between endothelial cells and bone cells. We have recently developed microscale in vitro hydrogel-based models, namely the 3D MiniTissue models, to obtain bone-mimicking microenvironments including a 3D microvascular network formed by endothelial cell self-assembly [1–2]. Here, we generated a vascularized 3D MiniTissue bone remodeling model through the coculture of primary human cells in a 3D collagen/fibrin (Col/Fib) matrix enriched with CaP nanoparticles (CaPn) to mimic bone mineralized matrix. Human umbilical vein endothelial