Background. Current clinical treatment for spinal instability requires invasive spinal fusion with cages and screw instrumentation. We previously reported a novel injectable hydrogel (Bgel), which supports the delivery and differentiation of mesenchymal stem cells (MSCs) to bone forming cells and supports
Introduction. Patients with metastatic spinal cord compression (MSCC) or unstable spinal lesions warrant early surgical consultation. In multiple myeloma, chemotherapy and radiotherapy have the potential to decompress the spinal canal effectively in the presence of epidural lesions. Mechanical stability conferred by bracing may potentiate intraosseous and extraosseous
Introduction. We have developed a new synthetic hydrogel that can be injected directly into the intervertebral disc (IVD) without major surgery. Designed to improve fixation of joint prosthesis, support bone healing or improve spinal fusion, the liquid may support the differentiation of native IVD cells towards osteoblast-like cells cultured within the hydrogel. Here we investigate the potential of this gel system (Bgel) to induce
A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL. A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up.Aims
Methods
Background. We have reported an injectable L-pNIPAM-co-DMAc hydrogel with hydroxyaptite nanoparticles (HAPna) which promotes mesenchymal stem cell (MSC) differentiation to bone cells without the need for growth factors. This hydrogel could potentially be used as an osteogenic and osteoconductive bone filler of spinal cages to improve vertebral body fusion. Here we investigated the biocompatibility and efficacy of the hydrogel in vivo using a proof of concept femur defect model. Methods. Rat sub-cut analysis was performed to investigate safety in vivo. A rat femur defect model was performed to evaluate efficacy. Four groups were investigated: sham operated controls; acellular L-pNIPAM-co-DMAc hydrogel; acellular L-pNIPAM-co-DMAc hydrogel with HAPna; L-pNIPAM-co-DMAc hydrogel with rat MSCs and HAPna. Following 4 weeks, defect site and organs were histologically examined to determine integration, repair and inflammatory response, as well as Micro-CT to assess mineralisation. Results. No inflammatory reactions or toxicity were seen in any animal. Enhanced bone healing was observed in aged exbreeder female rats where hydrogel was injected with increased deposition of collagen type I. Integration of the hydrogel with surrounding bone was observed without the need for delivered MSCs; native cell infiltration was also seen and
To investigate the correlations among cytokines and regulatory T cells (T-regs) in ankylosing spondylitis (AS) patients, and their changes after anti-tumour necrosis factor-α (TNF-α) treatment. We included 72 AS patients with detailed medical records, disease activity score (Bath Ankylosing Spondylitis Disease Activity Index), functional index (Bath Ankylosing Spondylitis Functional Index), and laboratory data (interleukin (IL)-2, IL-4, IL-10, TNF-α, interferon (IFN)-γ, transforming growth factor (TGF)-β, ESR, and CRP). Their peripheral blood mononuclear cells (PBMCs) were marked with anti-CD4, anti-CD25, and anti-FoxP3 antibodies, and triple positive T cells were gated by flow cytometry as T-regs. Their correlations were calculated and the changes after anti-TNF-α therapy were compared.Aims
Methods
Introduction. Low back pain is the leading cause of musculoskeletal disease and the biggest cause of morbidity worldwide. Approximately 40% of these are cases are caused by disease of the intervertebral discs (IVDs): the shock absorbing, flexible material located between the bones (vertebrae) along the length of the spine. In severe cases, the spine becomes unstable and it becomes necessary to immobilise or fix the joint in position using a lumbar cage spacer between in the IVD and metal pins with supporting plates in the vertebrae. This is a complex, expensive, major surgery and it is associated with complications, such as spinal fusion failure and inappropriate implant position. These complications have a dramatic impact on the quality of life of the affected patients and the burden to society and the healthcare system is exacerbated. Methods and Results. We present an in vitro study looking at the effect of our Bgel hydrogel on mesenchymal stem cells (MSCs) and their bone forming capacity within lumbar cages: devices used to space the bones apart in the fusion operation, as a mechanism to improve fixation and intra cage
Purpose of study and background. We have previously reported the development of injectable hydrogels for potential disc regeneration (NPgel) or
Lumbar spinal stenosis (LSS) is a common skeletal system disease that has been partly attributed to genetic variation. However, the correlation between genetic variation and pathological changes in LSS is insufficient, and it is difficult to provide a reference for the early diagnosis and treatment of the disease. We conducted a transcriptome-wide association study (TWAS) of spinal canal stenosis by integrating genome-wide association study summary statistics (including 661 cases and 178,065 controls) derived from Biobank Japan, and pre-computed gene expression weights of skeletal muscle and whole blood implemented in FUSION software. To verify the TWAS results, the candidate genes were furthered compared with messenger RNA (mRNA) expression profiles of LSS to screen for common genes. Finally, Metascape software was used to perform enrichment analysis of the candidate genes and common genes.Aims
Methods
We evaluated the efficacy of Escherichia
coli-derived recombinant human bone morphogenetic protein-2
(E-BMP-2) in a mini-pig model of spinal anterior interbody fusion.
A total of 14 male mini-pigs underwent three-level anterior lumbar
interbody fusion using polyether etherketone (PEEK) cages containing
porous hydroxyapatite (HA). Four groups of cages were prepared:
1) control (n = 10 segments); 2) 50 μg E-BMP-2 (n = 9); 3) 200 μg
E-BMP-2 (n = 10); and 4) 800 μg E-BMP-2 (n = 9). At eight weeks
after surgery the mini-pigs were killed and the specimens were evaluated
by gross inspection and manual palpation, radiological evaluation
including plain radiographs and micro-CT scans, and histological
analysis. Rates of fusion within PEEK cages and overall union rates
were calculated, and
Introduction:. Several reports showed superior fusion rates, as high as 100%, using rhBMP-2 with ALIF cages. This has led to the widespread off-label use of rhBMP-2 in several other lumbar fusion procedures. There is paucity of reports analysing the clinic-radiological outcome of using rhBMP-2 to promote bone union in cases of symptomatic pseudoarthosis following lumbar spine fusion. Methods:. 52 consecutive patients who underwent revision spinal surgery for symptomatic pseudoarthosis utilizing rhBMP-2 between 2008 and 2013 were included in the study. Demographic, and surgical data were collected from medical records. Functional outcomes were recorded using the ODI. All patients had preoperative fine-cut CT scan to confirm pseudoarthosis. Postoperative CT-scan at 6 months was routinely done to confirm fusion. Results:. Average age at time of revision surgery was 54years (range 28–73). Average follow up was 3 years 5 months (range 2–5 years). Overall fusion rate of 92.3% (48/52) was achieved. The average ODI has improved from 56% preoperatively to 49% postoperatively. We had 1 infection case, and 5 complications related to metalwork. One case with neuronal complications was recorded. No rhBMP-2 related complications. There was no record of heterotopic
To evaluate and describe the plain radiographic changes observed with time in fusions using SiS-CaP. We describe, for the first time, 4 stages of bone substitute fusion mass (BSFM) radiographic appearance in relation to time post-op. Retrospective, radiological evaluation. Over 200 plain radiographs were evaluated. 70 consecutive fusions for degenerative spinal stenosis were included, in all cases performed by the same surgeon using the same operative technique. Follow-up was from 3 months to 2 years post-op. Radiographs were evaluated for the presence or absence of SiS-CaP granules,
To assess radiological fusion rates in posterolateral fusions using SiS-CaP. Retrospective, radiological follow-up study. Single surgeon series of 76 consecutive patients were evaluated, in a regional spinal unit. All patients had clinical and radiological (MRI) spinal canal stenosis secondary to degenerative spondylosis or spondylolisthesis. Surgery consisted of instrumentation, decompression and meticulous preparation of the posterolateral graft bed by removal of all soft tissues posterior to the inter-transverse membrane and decortication of transverse processes (TPs). SiS-CaP putty was injected into this gutter and moulded around the instrumentation. Good quality, well prepared bone chips from the posterior decompression were seeded into the putty. Patient radiographs were reviewed at 3-6 months, 1 year and 2 years. Radiographs were assessed using a protocol to examine granularity,
Background. For bone grafting procedures, the use of autologous bone is considered the gold standard, as it is has a better healing capacity compared to other alternatives as allograft and synthetic bone substitutes. However, as there are several drawbacks related to autografting (infection, nerve- or vascular damage, chronic pain problems, abdominal herniation), there has been a targeted effort to improve the healing capacities of synthetic bone substitutes. Aim. To evaluate the performance of a carbonated osteoionductive hydroxyapatite (CHA) scaffold of clinical relevant size (Ø=15mm, H=50mm) in a sheep model of multi level posterolateral intertransverse lumbar spine fusion after activation with autologous bone marrow nuclear cells (BMNC) in a flow perfusion bioreactor. Method. Two groups were included in the study, autograft (n=6) and CHA scaffold (n=6) CHA. A paired design was used between and within the groups as lumbar posterolateral arthrodesis was performed in sheep on two levels (L2-L3, L5-L6) +/− BMNC, respectively. Before implantation, the CHA scaffold was cultured in a flow perfusion bioreactor system with BMNC for 21 days, and the autograft group was supplemented with isolated BMNC during the procedure. Micro tomography was used to evaluate fusion rate and the microarchitectural properties of the explants after an observation period of four months. Results. In the autograft group, the healing rate was 83.3% irrespective of the presence BMNC, and in the CHA group, 66.7% fused in the presence of BMNC, and 33.3% without. The microarchitectural data suggested the autograft group to be superior to the CHA scaffold regarding mechanical properties, however porosity decreased significantly (p=0.001) in the CHA scaffold group suggesting deposition of mineralized bone matrix. Conclusion. Based on the fusion rate and micro architectural properties, we consider the CHA scaffold fully capable of new
Pulsed electromagnetic field (PEMF) stimulation was evaluated after anterior cervical discectomy and fusion (ACDF) procedures in a randomized, controlled clinical study performed for United States Food and Drug Administration (FDA) approval. PEMF significantly increased fusion rates at six months, but 12-month fusion outcomes for subjects at elevated risk for pseudoarthrosis were not thoroughly reported. The objective of the current study was to evaluate the effect of PEMF treatment on subjects at increased risk for pseudoarthrosis after ACDF procedures. Two evaluations were performed that compared fusion rates between PEMF stimulation and a historical control (160 subjects) from the FDA investigational device exemption (IDE) study: a Objectives
Methods
Patients with multiple myeloma (MM) develop deposits in the spine
which may lead to vertebral compression fractures (VCFs). Our aim
was to establish which spinopelvic parameters are associated with
the greatest disability in patients with spinal myeloma and VCFs. We performed a retrospective cross-sectional review of 148 consecutive
patients (87 male, 61 female) with spinal myeloma and analysed correlations
between spinopelvic parameters and patient-reported outcome scores.
The mean age of the patients was 65.5 years (37 to 91) and the mean
number of vertebrae involved was 3.7 (1 to 15).Aims
Patients and Methods
The aims of this study were to evaluate the clinical and radiological
outcomes of instrumented posterolateral fusion (PLF) performed in
patients with rheumatoid arthritis (RA). A total of 40 patients with RA and 134 patients without RA underwent
instrumented PLF for spinal stenosis between January 2003 and December
2011. The two groups were matched for age, gender, bone mineral
density, the history of smoking and diabetes, and number of fusion
segments. The clinical outcomes measures included the visual analogue scale
(VAS) and the Korean Oswestry Disability Index (KODI), scored before
surgery, one year and two years after surgery. Radiological outcomes
were evaluated for problems of fixation, nonunion, and adjacent
segment disease (ASD). The mean follow-up was 36.4 months in the RA
group and 39.1 months in the non-RA group.Aims
Methods
The presacral retroperitoneal approach for axial lumbar interbody fusion (presacral ALIF) is not widely reported, particularly with regard to the mid-term outcome. This prospective study describes the clinical outcomes, complications and rates of fusion at a follow-up of two years for 26 patients who underwent this minimally invasive technique along with further stabilisation using pedicle screws. The fusion was single-level at the L5-S1 spinal segment in 17 patients and two-level at L4–5 and L5-S1 in the other nine. The visual analogue scale for pain and Oswestry Disability Index scores were recorded pre-operatively and during the 24-month study period. The evaluation of fusion was by thin-cut CT scans at six and 12 months, and flexion-extension plain radiographs at six, 12 and 24 months. Significant reductions in pain and disability occurred as early as three weeks postoperatively and were maintained. Fusion was achieved in 22 of 24 patients (92%) at 12 months and in 23 patients (96%) at 24 months. One patient (4%) with a pseudarthrosis underwent successful revision by augmentation of the posterolateral fusion mass through a standard open midline approach. There were no severe adverse events associated with presacral ALIF, which in this series demonstrated clinical outcomes and fusion rates comparable with those of reports of other methods of interbody fusion.
We carried out a prospective study to determine whether the addition of a recombinant human bone morphogenetic protein (rhBMP-2) to a machined allograft spacer would improve the rate of intervertebral body fusion in the spine. We studied 77 patients who were to undergo an interbody fusion with allograft and instrumentation. The first 36 patients received allograft with adjuvant rhBMP-2 (allograft/rhBMP-2 group), and the next 41, allograft and demineralised bone matrix (allograft/demineralised bone matrix group). Each patient was assessed clinically and radiologically both pre-operatively and at each follow-up visit using standard methods. Follow-up continued for two years. Every patient in the allograft/rhBMP-2 group had fused by six months. However, early graft lucency and significant (>
10%) subsidence were seen radiologically in 27 of 55 levels in this group. The mean graft height subsidence was 27% (13% to 42%) for anterior lumbar interbody fusion, 24% (13% to 40%) for transforaminal lumbar interbody fusion, and 53% (40% to 58%) for anterior cervical discectomy and fusion. Those who had undergone fusion using allograft and demineralised bone matrix lost only a mean of 4.6% (0% to 15%) of their graft height. Although a high rate of fusion (100%) was achieved with rhBMP-2, significant subsidence occurred in more than half of the levels (23 of 37) in the lumbar spine and 33% (6 of 18) in the cervical spine. A 98% fusion rate (62 of 63 levels) was achieved without rhBMP-2 and without the associated graft subsidence. Consequently, we no longer use rhBMP-2 with allograft in our practice if the allograft has to provide significant structural support.