header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 52 - 52
1 Dec 2020
Elma T Selek HY Çuhadar T Tokgöz MA Yapar A
Full Access

Antibiotic-laden bone cement is an important strategy of treatment for an established bone infection. It was aimed to find the safe antibiotic dose intervals of the antibiotic cements soaked in Phosphate Buffered Saline solution and to determine whether there was a difference in terms of mechanical strength between the prepared samples.

This study was done in our institute Microbiology and Metallurgy laboratories. All samples were prepared using manual mixing technique using 40 g radiopaque Biomet® Bone cement (Zimmer Biomet, Indiana, USA) under sterile conditions at 19 ± 2 ºC.

In this study, vancomycin (4 groups − 0.5, 2, 4, 6 g), teicoplanin (4 groups − 0.8, 1.2, 2, 2.4 g), daptomycin (4 groups − 1, 2, 2.5, 3 g), piperacillin-tazobactam (4 groups − 0.125, 0.5, 1, 2 g) and meropenem (4 groups − 0.5, 2, 4, 6 g) were measured in a assay balance and added to the cement powder. Antibiotic levels ranged from the lowest 0.625% to the highest 15%.

80×10×4 mm rectangle prism-shaped sample for mechanical measurements in accordance to ISO 5833 standart and 12×6×1 mm disc-shaped samples for microbiological assesments were used. Four sample for each antibiotic dose and control group was made. Prepared samples were evaluated macroscopically and faulty samples were excluded from the study. Prepared samples were kept in Phosphate Buffered Saline solution renewed every 24 hours at 37 ºC. At the end of 6 weeks, all samples were tested with Instron ® 3369 (Norwood Massachusetts, USA) four point bending test.

Staphylococcus aureus (ATCC 29213) strain was used for samples of antibiotics containing vancomycin, teicoplanin and daptomycin after the samples prepared for antibiotic release were maintained under sterile conditions and kept in Phosphate Buffered Saline solution as appropriate. For samples containing meropenem and piperacillin - tazobactam antibiotics, Pseudomonas aeruginosa (ATCC 27853) strain was used.

The addition of more than 5% antibiotics to the cement powder was significantly reduced mechanical strength in all groups(p <0.05) however the power of significance was changed depending on the type of antibiotic. In general, adding antibiotics with 2.5% and less for cement amount was not cause significant changes in mechanical measurements. There was a negative correlation between the increase in the amount of antibiotics mixed with cement and the durability of the cement (p: <0.001, r: −0.883 to 0.914).

In this study, especially the antibacterial effects of piperacillin-tazobactam, containing 0.25 gr and 0.5 gr antibiotic doses, were found to be low. There was no bacterial growth in all other groups for 21 days. Considering the mechanical properties of groups containing meropenem, vancomycin, daptomycin and teicoplanin, it was observed that all antibiotic cements remained above the limit value of 50 MPa in the bending test at concentrations containing 2.5% and less antibiotics. This was not achieved for the piperacillin-tazobactam group. The findings of the study showed that each antibiotic has different MPa values at different doses. Therefore, it could be concluded that not only the antibiotic dose but also the type oould change the mechanical properties. In the light of these findings, mixing more than 2.5% antibiotics in cement for the antibiotic types included in the study was ineffective in terms of antibacterial effect and mechanically reduces the durability of cement below the standard value of 50 MPa.


Bone & Joint Research
Vol. 6, Issue 5 | Pages 296 - 306
1 May 2017
Samara E Moriarty TF Decosterd LA Richards RG Gautier E Wahl P

Objectives

Thermal stability is a key property in determining the suitability of an antibiotic agent for local application in the treatment of orthopaedic infections. Despite the fact that long-term therapy is a stated goal of novel local delivery carriers, data describing thermal stability over a long period are scarce, and studies that avoid interference from specific carrier materials are absent from the orthopaedic literature.

Methods

In this study, a total of 38 frequently used antibiotic agents were maintained at 37°C in saline solution, and degradation and antibacterial activity assessed over six weeks. The impact of an initial supplementary heat exposure mimicking exothermically curing bone cement was also tested as this material is commonly used as a local delivery vehicle. Antibiotic degradation was assessed by liquid chromatography coupled to mass spectrometry, or by immunoassays, as appropriate. Antibacterial activity over time was determined by the Kirby-Bauer disk diffusion assay.


Bone & Joint Research
Vol. 3, Issue 8 | Pages 246 - 251
1 Aug 2014
Chang YH Tai CL Hsu HY Hsieh PH Lee MS Ueng SWN

Objectives

The objective of this study was to compare the elution characteristics, antimicrobial activity and mechanical properties of antibiotic-loaded bone cement (ALBC) loaded with powdered antibiotic, powdered antibiotic with inert filler (xylitol), or liquid antibiotic, particularly focusing on vancomycin and amphotericin B.

Methods

Cement specimens loaded with 2 g of vancomycin or amphotericin B powder (powder group), 2 g of antibiotic powder and 2 g of xylitol (xylitol group) or 12 ml of antibiotic solution containing 2 g of antibiotic (liquid group) were tested.


The Journal of Bone & Joint Surgery British Volume
Vol. 90-B, Issue 7 | Pages 973 - 979
1 Jul 2008
Savadkoohi DG Sadeghipour P Attarian H Sardari S Eslamifar A Shokrgozar MA

Curettage and packing with polymethylmethacrylate cement is a routine treatment for giant-cell tumour (GCT) of bone. We performed an in vitro evaluation of the cytotoxic effect of a combination of cement and methotrexate, doxorubicin and cisplatin on primary cell cultures of stromal GCT cells obtained from five patients. Cement cylinders containing four different concentrations of each drug were prepared, and the effect of the eluted drugs was examined at three different time intervals.

We found that the cytotoxic effect of eluted drugs depended on their concentration and the time interval, with even the lowest dose of each drug demonstrating an acceptable rate of cytotoxicity. Even in low doses, cytotoxic drugs mixed with polymethylmethacrylate cement could therefore be considered as effective local adjuvant treatment for GCTs.