Objectives. Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. Materials and Methods. We present a new
Our objective was to conduct a systematic review and meta-analysis, to establish whether differences arise in clinical outcomes between autologous and synthetic bone grafts in the operative management of tibial plateau fractures. A structured search of MEDLINE, EMBASE, the online archives of Bone & Joint Publishing, and CENTRAL databases from inception until 28 July 2021 was performed. Randomized, controlled, clinical trials that compared autologous and synthetic bone grafts in tibial plateau fractures were included. Preclinical studies, clinical studies in paediatric patients, pathological fractures, fracture nonunion, or chondral defects were excluded. Outcome data were assessed using the Risk of Bias 2 (ROB2) framework and synthesized in random-effect meta-analysis. The Preferred Reported Items for Systematic Review and Meta-Analyses guidance was followed throughout.Aims
Methods
Mechanical loading of bone is anabolic, while aseptic loosening of implants is catabolic. In a rat model of mechanically induced aseptic loosening, osteoclast differentiation is increased dramatically but the underlying mechanism is unknown. The objective was to profile molecular pathways in peri-implant bone resorption. Microarrays on cortical bone samples exposed to pressurized fluid flow were performed 3, 6, 12, 24 and 36 hrs, using time 0 as controls. Of a total of 4093 genes that underwent a 1.25-fold change (p<0.05) due to fluid flow only 21 were common for all time points. Signals linked to inflammation and apoptosis were regulated in a
In the assessment of fracture healing by monitoring stiffness with vibrational analysis or instrumented external fixators, it has been assumed that there is a workable correlation between stiffness and strength. We used four-point bending tests to study time-related changes in stiffness and strength in healing tibial fractures in sheep. We aimed to test the validity of the measurement of stiffness to assess fracture strength. At each duration of healing examined, we found marked variations in stiffness and strength. Stiffness was shown to be load-dependent: measurements at higher loads reflected ultimate strength more accurately. There was a
INTRODUCTION. One of the recent advances in the hard-on-hard hip arthroplasty is the development of a new material of diffusion hardened oxidised zirconium (DHOxZr). The DHOxZr material consists of a ceramic layer on the top surface which is supported by a thick oxygen diffusion hardened (DH) zone underneath. With the desired properties of metal substrate, ceramic surface and a gradient structure of the oxygen diffusion zone, the DHOxZr-on-DHOxZr bearing combination is expected to produce low wear and minimal metal ions. This can possibly address the concerns associated with metal hypersensitivity associated with metal on metal bearings and fracture risk associated with ceramics. The aim of this study was to evaluate the wear of DHOxZr-on-DHOxZr as a possible hard on hard bearing combination in hips. METHODS. Three pairs of 50 mm DHOxZr prototype hip joint devices, each consisting of a DHOxZr modular head and a DHOxZr liner were wear tested in a ProSim hip joint simulator under standard testing conditions used by the Implant Development Centre (IDC), Smith & Nephew, Leamington Spa for 5 million cycles (Mc). The flexion/extension was 30° and 15°. The internal/external rotation was ± 10°. The force was Paul-type stance phase loading, with a maximum load of 3 kN and a standard ISO swing phase load of 0.3 kN. The test frequency was 1 Hz. Gravimetric analysis was carried out at 0, 0.5, 1, 2, 3, 4 & 5 million cycles. The lubricant was new born calf serum with 2 g/l sodium azide concentration diluted with de-ionised water to achieve average protein concentration of 20 g/l. Lubricant was changed every 0.25Mc during the first million cycles of the test and at every 0.33 Mc from 1 to 5Mc. RESULTS. A
INTRODUCTION. Hip wear simulator test results could be affected by many non-bearing related factors such as fixation surface conditions, equipment calibration and component set-up. In an effort to improve the accuracy, reliability and repeatability of hip simulator test, a quality management system has been established at the IDC hip tribology laboratory, which has been accredited by UKAS (United Kingdom Accreditation Service) in accordance with the recognised international standard ISO17025. This study demonstrates that under well-controlled laboratory and testing conditions, satisfactory repeatability can be achieved during hip simulator studies. METHODS. Between 2008 to 2010, ten 50 mm Birmingham Hip Resurfacing (BHR) devices were tested by the IDC tribology laboratory using two ProSim hip wear simulators in three different tests (T1, T2 and T3). All tests were performed following the same IDC testing protocols at 1 Hz frequency for 5 million cycles (Mc) or until after a steady state was reached. Paul type stance phase loadings with a maximum load of 3 kN and a swing phase load of 0.3 kN was used. The flexion and extension angles were 30 and 15 degree. The internal/external rotation angel was ±10 degree. Wear was measured gravimetrically using an analytical balance (Mettler, Toledo xp504) with an accuracy of 0.1 mg. RESULTS. Results showed that wear of all the components tested followed the typical
We undertook a trial on 60 patients with AO 31A2 fractures of the hip who were randomised after stabilisation of the fracture into two equal groups, one of which received post-operative treatment using a non-invasive interactive neurostimulation device and the other with a sham device. All other aspects of their rehabilitation were the same. The treatment was continued for ten days after operation. Outcome measurements included the use of a visual analogue scale for pain, the brief pain inventory and Ketorolac for post-operative control of pain, and an overall assessment of outcome by the surgeon. There were significantly better results for the patients receiving treatment by active electrical stimulation (repeated measures analysis of variance, p <
0.001). The findings of this pilot trial justify a larger study to determine if these results are more generally applicable.