header advert
Results 1 - 20 of 165
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 83 - 83
24 Nov 2023
d'Epenoux Louise R Fayoux E Veziers J Dagnelie M Khamari A Deno B Corvec S
Full Access

Background. Although described as a commensal bacterium with low pathogenicity, Cutibacterium acnes involvement has been reported in many clinical entities: infections associated with devices, such as shoulder prosthetic joint infections, osteosynthesis, breast implants or cerebrospinal fluid shunts. Various studies show that C. acnes grows as a biofilm, contributing to its persistence by allowing its escape from the action of the immune system and antibiotics. Purpose. Our aim was to assess the activity of different active substances (erythromycin, clindamycin, doxycycline and Myrtacine. ®. ) on eight different well-characterized C. acnes strains after growth in biofilm mode. Methods. Eight susceptible strains of C. acnes were selected for this study, including two reference strains (ATCC6919 and ATCC11827) and six clinical strains. All C. acnes strains were studied using two different methods to study the biofilm production at different time points: the BioFilm Ring Test. ®. technique (early stages of adhesion) and the Crystal Violet (CV) method (mature biofilm). In a second step, the impact of different active substances (erythromycin, clindamycin, doxycycline and Myrtacine. ®. ) was studied. For the CV technique, two types of tests were performed: preventive tests (addition of active substances and bacteria at the same time) and curative challenge tests (addition of active substances on a biofilm already formed after 48h). Transmission electron microscopy was performed to investigate the morphology modifications. Results. C. acnes isolates from phylotypes IA. 1. and IA. 2. , seem to produce more mature biofilm in the first stages of adhesion than other phylotypes. Curative assays were performed to evaluate the efficacy of antibiotics and Myrtacine. ®. on mature biofilm. Significant efficacy of Myrtacine. ®. at 0.03% was observed for C. acnes strains. Moreover, the combination of Myrtacine. ®. and doxycycline appears to decrease the total biofilm biomass. The effect of doxycycline as a preventive measure was minimal. On the contrary, a similar use of Myrtacine. ®. as early as 0.001% showed significant efficacy with a significant decrease in total biofilm biomass for all C. acnes strains. Transmission electron microscopy revealed a significantly decreased biofilm growth in treated bacteria with Myrtacine. ®. compared to untreated bacteria. Moreover, the total number of bacteria decreased as the concentration of Myrtacine. ®. increased suggesting also an antimicrobial effect. Conclusion. These results confirm the difference in biofilm producing ability depending on C. acnes phylotypes. These results suggest that Myrtacine. ®. may be a promising alternative antibacterial and anti-biofilm agent like peroxide de benzoyle to prevent shoulder prosthetic joint infection involving planktonic and biofilm C. acnes


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 22 - 22
24 Nov 2023
Jo S Chao C Khilnani T Bostrom M Carli A
Full Access

Aim. Polypropylene (PPE) synthetic mesh is increasingly used in knee arthroplasty surgery to salvage a disrupted extensor mechanism. Despite its clinical success, it is associated with a high rate of periprosthetic joint infection (PJI), which is hypothesized to be caused by bacterial biofilm. The purpose of the current study is to describe the progression of PPE-based biofilm formation over time and to determine if intraoperative antiseptic solutions could be used to effectively remove biofilm when treating PJI. Method. Commercially available knotted monofilament PPE mesh. 1. was cut into 10mm circular shape, immersed in tryptic soy broth (TSB) with methicillin-sensitive staphylococcus aureus and cultured individually in 48-well plates for 10 days to elucidate the biofilm grown on mesh over time. At every 24 hours, a triplicate of samples was retrieved and biofilm on the mesh was dislodged by sonicating at 52 kHz for 15 minutes and quantified by counting colony-forming units (CFUs) after overnight growth. The biofilm growth was also verified using scanning electron microscopy. The effect of saline and antiseptic solutions was verified by exposing 1) 0.05% chlorohexidine gluconate. 2. , 2) acetic acid-based mixture. 3. , 3) diluted povidone-iodine (0.35%), 4) undiluted povidone-iodine (10%). 4. , and 5) 1:1 combination of 10% povidone-iodine & 3% hydrogen peroxide on immature and mature biofilms for 3 minutes, created by culturing with bacteria for 24 hours and 72 hours respectively. All experiments were performed in quintuples and repeated. Antiseptic treatments that produced a three-log reduction in CFU counts compared to controls were considered clinically significant. Results. PPE-mesh produced reliable CFU counts at 24 hours and reached peak growth at 72 hours. For immature biofilm, all formulations of povidone-iodine produced significant reductions in CFU counts compared to controls. Although not meeting the established threshold, saline irrigation removed 86.5% of CFUs, while formulation based on chlorohexidine and acetic acid removed 99.2% and 99.7% respectively. For mature biofilm, formulations based on povidone-iodine and acetic acid produced significant reductions in CFU counts. Conclusions. Our findings suggest biofilm may form on mesh as early as 24 hours after bacterial exposure. Povidone-iodine formulations were consistently the most effective in removing biofilm on mesh surfaces. We recommend that surgeons consider using an antiseptic solution, preferably povidone-iodine-based, in addition to regular saline lavage when attempting to salvage a PPE mesh in the setting of PJI. 1. Marlex mesh (CR Bard, Davol Inc, Warwick, RI), . 2. Irrisept (Irrimax Corp, Gainesville, FL), . 3. Bactisure (Zimmer-Biomet, Warsaw, IN), . 4. Aplicare (Inc, Meriden, CT)


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 79 - 79
1 Oct 2022
Bernaus M Cubillos YL Soto S Bermúdez A Calero JA Torres D Veloso M Font-Vizcarra L
Full Access

Aim. To evaluate the efficiency of pulse lavage combined with electrical fields to remove biofilm from a metallic surface. Method. Using a 12-well culture plate designed for the application of electrical fields, strains of S. epidermidis were incubated at each well for 24 hours at 37ºC. After incubation, supernatant culture medium was removed, and each well was filled with 3ml of normal saline. Six different models were compared: a) control, b) low-pressure pulse lavage, c) high-pressure pulse lavage, d) pulsed electrical fields, e) low-pressure pulse lavage in combination with pulsed electrical fields, and f) high-pressure pulse lavage in combination with pulsed electrical fields. In all cases, exposure time was set to 25 seconds. In the electrical field models, 50 pulses were applied. After exposure, each bottom electrode was scraped carefully to release adhered bacteria. Subsequently, different dilutions of biofilm removed were spread onto Müller Hinton agar plates and incubated for 24h at 37 ºC, and colony-forming units (CFU) per milliliters were counted. Bacterial counts were then compared to the control model. Results. High-pressure pulse lavage combined with pulsed electrical fields showed the greatest biofilm removal with reductions of up to 11.9 logarithms when compared to the control group. The lowest reduction was achieved by low-pressure pulsed lavage (4.7 logs). All reductions showed statistically significant differences. Conclusion. The results of our comparative study between different models demonstrates high reduction rates for biofilm removal. Further in vivo studies are needed to evaluate the capacity of the combination of high-pressure pulse lavage with pulsed electrical fields in removing bacterial biofilm in real conditions


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 29 - 29
1 Dec 2021
Visperas A Piuzzi N Ju M Wickramasinghe S Anis H Milbrandt N Tsai YH Klika AK Barsoum W Samia A Higuera-Rueda C
Full Access

Aim. Periprosthetic joint infection (PJI) is a devastating complication of total joint arthroplasty. While research has focused on developing better tests for disease diagnosis, treatment options have stayed relatively constant over the years with high failure rates ranging from 30%–50% and are due in part to the protective biofilm produced by some bacterial species. Current treatment options are compromised by the presence of biofilm, emphasizing the need for novel treatment strategies to be developed. Our group has developed a novel treatment (PhotothermAA) which has demonstrated in vitro its ability to target bacterial biofilm. The purpose of this study was to test this PhotothermAA technology in vivo in a rabbit model of PJI for its efficacy in eradicating biofilm. Method. Rabbits were fitted with a titanium implant into the tibial plateau and inoculated with 5×10. 6. CFU Xen36 (luminescent Staphylococcus aureus). At two weeks, rabbits underwent irrigation and debridement and treatment with PhotothermAA gel for two hours and subsequently laser heated using an 808 nm laser for 10 minutes. Gel was washed out and implant was removed for quantitative biofilm coverage analysis via scanning electron microscopy (SEM, n=3 for control and n=2 for PhotothermAA treated). Periprosthetic tissue was collected before and after treatment for toxicity studies via hemotoxylin and eosin (H&E) staining and scored for necrosis by three blinded reviewers (n=5 per group). Student's t-test was used for statistical analysis. Results. Implants isolated after PhotothermAA gel treatment had less biofilm coverage on the surface of the implant compared to non-treated control via SEM analysis (36.9% vs. 55.2%, p<0.14). PhotothermAA gel treatment and subsequent laser treatment was not harmful to surrounding tissue as no increase in necrotic tissue was observed. Conclusions. PhotothermAA gel and laser treatment safely decreases biofilm coverage on infected knee implants in a rabbit PJI model


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 76 - 76
1 Dec 2021
Mannala G Rupp M Alagboso F Docheva D Alt V
Full Access

Aim. In vivo biofilm models play major role to study biofilm development, morphology, and regulatory molecules involve in biofilm. Due to ethical restrictions, the use mammalian models are replaced with other alternative models in basic research. Recently, we have developed insect infection model G. mellonella larvae to study implant associated biofilm infections. This model organism is easy to handle, cheap and ethical restriction free and could be used for the high through put screening of antimicrobial compounds to treat biofilm. To promote the use of this model in basic research we aimed to validate this based on the typical biofilm features such as less susceptible to the antibiotics, complexity of the biofilm structure and gene expression profile of biofilms. Method. G. mellonella larvae are maintained at 30oC on artificial diet in an incubator. Titanium and Stainless steel K-wires were cut into small pieces with size of 4mm. After sterilization with 100% alcohol, these K-wires were pre-incubated in S. aureus bacterial suspension (5×10. 6. CFU/ml) for 30 min, washed in PBS and implanted inside the larva after with help of scalpel. The larvae were incubated at 37. o. C for two day for the survival analysis. To analyze the less susceptibility of the biofilms towards antibiotics, the larvae were treated with gentamicin and compared survival with planktonic infection in G. mellonella. To reveal the complex structure of biofilm, the implants were removed and processed for the MALDI analysis. Whole genome-based transcriptome of biofilm was performed to explore the changes in transcriptional landscapes. Results. The results are very promising to validate the use of G. mellonella as in vivo model to study the biofilm formation on implanted materials. The gentamicin treatment could rescue the larvae from the planktonic infection, but not from the biofilm infection on the implants. Further, the MALDI analysis could reveal the complex structure and components of S. aureus biofilm formed on the implant inside the larvae. Finally, the transcriptomic analysis revealed the gene expression changes that can be compared to normal biofilm expression profile. Conclusions. Further, comparison of these results with other in vivo models such as rat and mouse as well as acute and chronic clinical samples from patients with implant-associated bone infections could validate and relevant use of this model to study S. aureus biofilm infections


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 43 - 43
1 Oct 2022
Moore K Li A Gupta N Price B Delury C Laycock P Aiken S Stoodley P
Full Access

Aim. Multispecies biofilms are associated with difficult periprosthetic joint infections (PJI), particularly if they have different antibiotic sensitivities. We aimed to determine if we could generate and kill a multispecies biofilm consisting of a Gram negative and Gram positive pathogen in-vitro with antibiotic loaded calcium sulfate beads containing single or combination antibiotics. Methods. To establish whether we could co-culture mixed species biofilms various combinations of Pseudomonas aeruginosa (PA), Enterococcus faecalis (EF), Staphylococcus aureus (SA) and Enterobacter faecalis (EF) were grown together on 316L stainless steel coupons and agar plates. Based on this screen we focused on PA + EF and challenged them with high purity calcium sulfate beads (Stimulan Rapid Cure) loaded with vancomycin (V), alone tobramycin (T) alone or vancomycin and tobramycin in combination (V+T). Bioluminescence, light imaging, plate count, confocal microscopy and scanning electron microscopy were used to quantify growth. Results. On 316LSS the V loaded bead reduced both EF and PA by approximately 2 logs compared to unloaded control beads. A T alone loaded bead eliminated PA from the dual species biofilm and caused a 2-log reduction in EF. The V+T-beads reduced PA by 9-logs and EF by 8.3 logs. In terms of total CFUs V+T beads reduced the bioburden by 8.4 logs compared to V or T alone. which resulted in 2.1 and 2.6 log reductions respectively. (* P<0.05, *** P<0.001). On agar PA dominated the culture for the unloaded and V loaded beads. However, when challenged with a T loaded bead both species were able to coexist and a zone of killing was generated in both species in the multispecies biofilms. However, this zone was smaller and included more tolerant variants than the zone generated by V+T-loaded beads. Conclusions. There were species proportion differences between biofilms grown on agar and 316LSS demonstrating the importance of growth conditions on species interactions. Antibiotics against strains with differing sensitivities can shift species interactions. High purity calcium sulfate beads containing tobramycin a broad-spectrum Gram positive and negative antibiotic vancomycin, a Gram-positive targeted antibiotic killed a larger percentage of a multispecies in an in-vitro biofilm than either single gram-specific antibiotic alone, demonstrating the advantage of using combination antibiotics for treating multispecies biofilms


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 73 - 73
1 Dec 2021
Cho J Goswami K Sukhonthamarn K Parvizi J Arnold W
Full Access

Aim. The efficacy of various irrigation solutions in removing microbial contamination of a surgical wound and reducing the rate of subsequent surgical site infection (SSI), has been demonstrated extensively. However, it is not known if irrigation solutions have any activity against established biofilm. This issue is pertinent as successful management of patients with periprosthetic joint infection (PJI) includes the ability to remove biofilm established on the surface of implants and necrotic tissues. The purpose of this study was to evaluate the efficacy of various irrigation solutions in eradicating established biofilm, as opposed to planktonic bacteria, in a validated in vitro model. Method. Established biofilms of Staphylococcus aureus and Escherichia coli were exposed to different irrigation solutions that included Polymyxin 500,000U/L plus bacitracin 50,000U/L, Vancomycin 1g/L, Gentamicin 80mg/L, Normal saline 0.9%, off-the-shelf Betadine 0.3%, Chlorhexidine 0.05%, Benzalkonium 1.3g/L, Sodium hypochlorite 0.125%, and Povidone-iodine 0.5%. Each experiment was conducted in a 96-well microtiter plate with a peg lid and standardized per the MBEC assay manufacturer's protocol. Following 2 minutes of solution exposure to the irrigation solution, residual biofilms were recovered by sonication. Outcome measures for antibiofilm efficacy were residual colony forming units (CFU) and optical density (690nm). Experiments were conducted in 24 replicates and the observations recorded by two blinded observers. Statistical analysis involved t-tests with Bonferonni adjustment. Results. Povidone-iodine 0.5%, Betadine 0.3%, Benzalkonium 1.3g/L, and Sodium hypochlorite 0.125% were significantly more efficacious against S.aureus biofilm versus all other solutions (p<0.001). Against E.coli biofilm, Povidone-iodine-0.5%, Benzalkonium-1.3g/L and Sodium hypochlorite-0.125% were also most effective compared to other irrigation solutions (p<0.001). Polymyxin-bacitracin, Gentamicin, Vancomycin, and Saline solutions had minimal activity against both E.coli and S.aureus biofilms (p<0.001). Similar trends were observed using both experimental endpoints (CFU and Turbidity) and both investigators (interrater reliability; r=0.99). Conclusion. This in vitro study observed that topical antibiotic solutions do not have any activity against established biofilms. Irrigations solutions containing adequate amount of povidone-iodine, betadine, sodium hypochlorite, and benzalkonium appear to have activity against established biofilm by gram positive and gram negative organisms. The use of these irrigation solutions may need to be considered in patients with established PJI


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 75 - 75
1 Dec 2021
Carrasco FC Karbysheva S Pérez-Prieto D Margaryan D Barbera OF Trampuz A Garcia JCM
Full Access

Aim. Quadrupled hamstring anterior cruciate ligament plasties (4xHp) have been described as having a higher risk of infection than bone patellar tendon bone plasties (BPTBp). There are 2 theories that might explain this phenomenon. One is the presence of sutures in a 4xHp that could act as a foreign body, The other is the more complex preparation of a 4xHp that might lead to higher contamination rates during the process. The objective of the present study was to evaluate the formation of biofilm in these plasties and to compare it between a 4xHp and a BPTBp. The hypothesis was that the presence of sutures in 4xHp would increase the amount of biofilm present in them in comparison to BPTBp. Method. A descriptive in vitro study was conducted. One 4xHp and one BPTBp were prepared. They were subsequently divided into 8 fragments. Three of them were reserved for negative control, and the rest were contaminated with a strain of S. Epidermidis (ATCC 35984) 10–5. Finally, a quantitative analysis was carried out by means of microcalorimetry and sonication with plating. Additionally, a qualitative analysis was carried out by means of electron microscopy. Results. In isothermal microcalorimetry, both contaminated plasties showed the same growth dynamics with a population peak (200uW) at 8h. No significant differences were found between the bacterial growth profiles of 4xHp and BPTBp. The product of sonication was plated and the number of colony forming units per milliliter (CFU/ml) was counted at 24 hours. No significant differences were detected between the 4×Hp (mean +/− sem = 3,5×107 +/− 3450000) and the BPTBp (4,6 ×107 +/− 1,455e+7). With a p value of 0.6667, there were no differences of significance (Mann-Whitney test). In the samples analyzed with electron microscopy, no specific biofilm growth pattern was identified upon comparing BPTBp with 4xHp. Conclusions. There were no significant differences at either the quantitative or qualitative level when comparing bacterial growth in BPTBp and 4xHp. Therefore, the presence of sutures in 4xHp cannot be established as a predisposing factor to higher infection rates. These findings may be justified in the sense that the plasties themselves already behave like foreign bodies. Therefore, the presence of sutures does not increase the possibility of biofilm forming on their surface


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 60 - 60
1 Dec 2017
Jensen LK Henriksen NL Jensen HE
Full Access

Aim. Despite the expanding research focusing on bacterial biofilm formation, specific histochemical biofilm stains have not been developed for light microscopy. Therefore, pathologists are often not aware of the presence of biofilm formation when examining slides for diagnosing bacterial infections, including orthopaedic infections. The aim of the present study was to develop a combined histochemical and immunohistochemical biofilm stain for simultaneous visualization of Staphylococcus aureus bacteria and extracellular matrix in different colours using light microscopy. Methods. Infected bone tissue was collected from two different porcine models of osteomyelitis inoculated with the biofilm forming S. aureus strain S54F9. The infection time was 5 and 15 days, respectively. First, 25 common histochemical protocols were used in order to find stains that could identify extracellular biofilm matrix. Hereafter, the histochemical protocols for Alcian Blue pH3, Luna and Methyl-pyronin green were combined with an immunohistochemical protocol based on a specific antibody against S. aureus. Finally, the three new combined protocols were applied to infected bone tissue from a child suffering from chronic staphylococcal osteomyelitis for more than a year. For all combined protocols applied on all types of tissue (porcine and human) the number of double stained bacterial aggregates were counted. On the same sections the percentage of extracellular matrix of representative bacterial aggregates was calculated by image analysis. Results. Simultaneous visualization of bacterial cells and extracellular matrix in different colours was detected in both porcine and human tissue sections with all three combined protocols. The bacterial cells were red to light brown and the extracellular matrix either light blue, blue or orange depending on the histochemical stain i.e. if it was Alcian blue pH3 (colouring polysaccharides), Luna or Methyl green-pyronin (both colouring extracellular DNA), respectively. In the porcine models, 10 percent of the bacterial aggregates in a 10× magnification field revealed both the extracellular matrix and bacteria simultaneously in two different colours. For the human case, this was seen in 90 percent of the bacterial aggregates. The percentage of extracellular matrix of representative bacterial aggregates was 60 and 20 percent in the human and porcine tissues, respectively. Conclusions. The amount of S. aureus biofilm extracellular matrix increased with infection time. A combination of histochemical and immunohistochemical staining is a practical method for identification and evaluation of S. aureus biofilm in orthopaedic infections


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 87 - 87
1 Dec 2021
Mannala G Rupp M Walter N Brunotte M Alagboso F Docheva D Brochhausen C Alt V
Full Access

Aim. Here, we are aimed to evaluate bacteriophage (191219) to treat S. aureus implant-associated bone infections by means of testing against S. aureus during its planktonic, biofilm and intracellular growth phases and finally assessing antimicrobial effect on in vivo biofilm formed on metal K-wire in an alternative insect model Galleria mellonella. Method. The bacteriophages (191219) were provided from D&D Pharma GmbH. These bacteriophages were tested against S. aureus EDCC 5055 (MSSA) and S. aureus DSM 21979 (MRSA) strains. To assess the activity of bacteriophages against planktonic growth phase, bacteriophages, and S. aureus EDCC 5055(1×10. 7. CFU/ml) were co-cultured in LB media as multiplicity of infection (MOI) of 10, 1, 0.1, and 0.01 for 24 hours at 37. o. C and finally plated out on the LB agar plates to estimate the bacterial growth. The antimicrobial activity of bacteriophages on biofilms in vitro was measured by analysing the incubating the several fold dilutions of bacteriophages in LB media with biofilms formed on 96-well plate. The eradication of biofilm was analysed with crystal violet as well as CFU analysis methods. Later, the effect of bacteriophages on intracellular growth of S. aureus in side osteoblast was tested by treating the S. aureus infected osteoblasts at 2h, 4h and 24h time points of post treatment. In addition, we have analysed synergistic effect with gentamicin and rifampicin antibiotics to clear intracellular S. aureus. Finally, experiments are performed to prove the effect of bacteriophages to clear in vivo biofilm using alternative insect model G. mellonella as well as to detect the presence of bacteriophages inside the osteoblasts through transmission electron microscopy (TEM) analysis. Results. Our results demonstrate the in vitro efficacy of bacteriophages against planktonic S. aureus. Transmission electron microscopy (TEM) experiments revealed severe infection of bacteria by bacteriophages. Bacteriophages also eradicated in a dose-dependent manner in vitro S. aureus biofilm formation and were active against intracellular S. aureus in an osteoblastic cell line. TEM analysis visualized the effect of the bacteriophages on S. aureus inside the osteoblasts with the destruction of the intracellular bacteria and formation of new bacteriophages. For the Galleria infection model, single administration of phages failed to show improvement in survival rates, but exhibited some synergistic effects with gentamicin or rifampicin, which was not statistically significant. Conclusions. In summary, bacteriophages could be a potential adjuvant treatment strategy for patients with implant-associated biofilm infections. Further preclinical and clinical trials are required to establish adequate treatment protocols


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 1 - 1
1 Mar 2021
Taha M Werier J Abdelbary H
Full Access

Periprosthetic joint infection (PJI) remains one of the most devastating complications that can occur following total joint arthroplasty. Failure rate of standard treatment for PJI is estimated to be around 40% at two years post revision surgery. A major clinical challenge contributing to treatment failure and antibiotics tolerance is the biofilm formation on implant surfaces. Lytic bacteriophages (phages) can target biofilm associated bacteria at localized sites of infection by penetrating and disrupting biofilm matrices; furthermore, phage replication within the biofilm leads to high local concentrations resulting in a powerful therapeutic effect. The aim of this study is to test if phage cocktail has better antimicrobial effect than vancomycin or a single agent phage against biofilm forming MRSA clinical strain Staphylococcus aureus (S. aureus). S. aureus BP043 was utilized in this study. This strain is a PJI clinical isolate, methicillin resistant (MRSA) and biofilm-former. Three lytic phages, namely, 44AHJD, Team1 and P68, known to infect S. aureus, were tested for their efficiency against S. aureus BP043. The ability of the phages to eliminate S. aureus BP043 planktonic or biofilm cultures was tested either as singular phages or as a cocktail of the three phages. Planktonic cells were adjusted to ∼ 1×109 CFU/mL in tryptic soy broth (TSB) and each phage was added alone or as a cocktail at ∼ 1×109 PFU/mL with moi of 1 (a multiplicity of infection). Bacterial growth was assessed by measuring optical densities at 24hr and was compared to the control of S. aureus BP043 with no phage. BP043 biofilms was grown for 24hr on plasma sprayed titanium (Ti-6Al-4V) alloy disc surfaces. Mature biofilms were then treated with one of the three phages or a cocktail of the 3 phages for 24hr at ∼ 1×109 PFU/mL in TSB. Then, biofilms were dislodged, and bacterial survival was assessed by plating on tryptic soy agar plates. Survival in treated biofilms was compared to control biofilm that was exposed only to TSB. Planktonic cells growth in the presence of phage 44AHJD was reduced significantly (p <0.0001) after 24hr compared to the control. The other two phages did not show a similar pattern when used alone. The reduction in growth was more pronounced when the three phages were combined together (p <0.0001, compared to the control, p=0.011 3, 44AHJD alone versus 3 phages). Exposing BP043 biofilm to the phage cocktail resulted in more than three logs (CFU/mL) reduction in bacterial load residing in the biofilm while no effect was detected when either vancomycin or each phage was used solely. We have demonstrated that the usage of lytic phage cocktail contributes to better clearance of planktonic cultures of the S. aureus MRSA isolate. More importantly, viable bacteria in the biofilms that were grown on plasma sprayed titanium discs were reduced by more than 37% when a phage cocktail was used compared to using a single phage or vancomycin. This work is aimed at gathering preclinical evidence for using phage as a new therapeutic avenue to treat PJI


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 66 - 66
1 Dec 2018
Karbysheva S Di Luca M Butini ME Trampuz A
Full Access

Aim. To compare the performance of sonication and chemical methods (EDTA and DTT) for biofilm removal from artificial surface. Method. In vitro a mature biofilms of Staphylococcus epidermidis (ATCC 35984) and P. aeruginosa ATCC®53278) were grown on porous glass beads for 3 days in inoculated brain heart infusion broth (BHI). After biofilm formation, beads were exposed to 0.9% NaCl (control), sonication (40 kHz, 1 min, 0.2 W/cm. 2. ), EDTA (25 mM/15 min) and DTT (1 g/L/15 min). Quantitative and qualitative biofilm analysis were performed with viable counts (CFU/ml) and microcalorimetry using time to detection (TTD), defined as the time from insertion of the ampoule into the calorimeter until the exponentially rising of heat flow signal exceeded 100 μW, which is inversely proportional to the amount of remaining bacterial biofilm on the beads. All experiments were performed in triplicate. Results. Mean colony counts obtained after treatment S. epidermidis biofilms with EDTA and DTT was similar to those after 0.9% NaCl (control) – 6.3, 6.1 and 6.0 log CFU/mL, respectively. Sonication detected significantly higher CFU counts with 7.5 log (p<0.05). Concordant results were detected with microcalorimetry: significantly less (p<0.05) biofilm after treatment with sonication compared to EDTA and DTT (12 h vs 6h and 6h, respectively). The same results were observed when P. aeruginosa biofilms were treated. Mean colony counts dislodged after treatment with EDTA and DTT was similar to those after 0.9% NaCl (control) – 5.2, 5.3 and 5.0 log CFU/mL, respectively. Sonication detected significantly higher CFU counts with 6.5 log (p<0.05). Microcalorimetry reviled concordant results: significantly less (p<0.05) biofilm after treatment with sonication in comparison with EDTA and DTT (11 h vs 6h and 6h, respectively). Conclusions. Chemical methods showed no difference in biofilm dislodging compared to normal saline. Sonication is superior to chemical methods (DTT or EDTA) for biofilm detection. Sonication may be improved by combination of two or more chemical dislodgement methods


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 129 - 129
1 Feb 2017
Lyons S Leary J Broach W Shaw L Santoni B Bernasek T
Full Access

Background. Periprosthetic joint infection (PJI) is a devastating complication and interest exists in finding lower cost alternatives to current management strategies. Current strategies include a two-stage revision with placement of an antibiotic spacer and delayed placement of a new arthroplasty implant. This study aimed to show that biofilm residue can be reliably eradicated on infected implants, safely allowing re-implantation in a spacer. Methods. Strains of Staphylococcus aureus MRSA252 or Staphylococcus epidermidis RP62A were grown on cobalt-chrome discs. For each strain, discs were divided into 5 groups (5 discs each) and exposed to several sterilization and biofilm eradication treatments: (1) autoclave, (2) autoclave + sonication; (3) autoclave + saline scrub; (4) autoclave + 4% chlorhexidine (CHC) scrub; and (5) autoclave + sonication + CHC scrub. Sterilization and biofilm eradication were quantified with crystal violet assays and scanning electron microscopy (SEM). Results. Relative to non-treated controls, autoclaving alone reduced biofilm load by 33.9% and 54.7% for MRSA252 and RP62A strains, respectively. On average, the most effective sterilization and biofilm removal treatment was the combined treatment of autoclaving, sonication and CHC-scrub for MRSA252 (100%) and RP62A (99.8%). High resolution SEM revealed no cells or biofilm for this combined treatment. Conclusions. Using two commonly encountered bacterial strains in PJI, infected cobalt-chrome implants were sterilized and eradicated of residual biofilm with a combination of autoclaving, sonication and CHC scrubbing. This protocol is time efficient, can be done in the OR and provides a basis for reuse of infected implants as articulating spacers in PJI


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 24 - 24
1 Dec 2019
Butini ME Abbandonato G Rienzo CD Trampuz A Luca MD
Full Access

Aim. Most orthopedic infections are due to the microbial colonization of abiotic surfaces, which evolves into biofilm formation. Within biofilms, persisters constitute a microbial subpopulation of cells characterized by a lower metabolic-activity, being phenotipically tolerant to high concentrations of antibiotics. Due to their extreme tolerance, persisters may cause relapses upon treatment discontinuation, leading to infection recalcitrance hindering the bony tissue regeneration. Using isothermal microcalorimetry (IMC), we aimed to evaluate in vitro the presence of persisters in a methicillin-resistant Staphylococcus aureus (MRSA) biofilm after treatment with high concentrations of vancomycin (VAN) and their ability to revert to a normal-growing phenotype during incubation in fresh medium without antibiotic. Moreover, the ability of daptomycin to eradicate the infection by killing persisters was also investigated. Method. A 24h-old MRSA ATCC 43300 biofilm was exposed to 1024 µg/ml VAN for 24h. Metabolism-related heat of biofilm-embedded cells, either during or after VAN-treatment, was monitored in real-time by IMC for 24 or 48h, respectively. To evaluate the presence of VAN-derived “persisters” after antibiotic treatment, beads were sonicated and detached free-floating bacteria were further challenged with 100xMIC VAN (100 µg/ml) in PBS+1% Cation Adjusted Mueller Hinton Broth (CAMHB).. Suspensions were plated for colony counting. The resumption of persister cells' normal growth was analysed by IMC on dislodged trated cells for 15h in CAMHB. Activity of 16 µg/ml daptomycin was assessed against persister cells by colony counting. Results. When incubated with 1024 µg/ml VAN, MRSA biofilm produced undetectable heat, suggesting a strong reduction of cell viability and/or cellular metabolism. However, the same samples re-inoculated in fresh medium produced a detectable and delayed metabolism-related heat signal, similarly to that generated by persister cells. The following exposure to 100xMIC VAN resulted in neither complete killing nor bacterial growth, strongly supporting the hypothesis of a persistent phenotype. IMC analysis indicated that VAN-treated biofilm cells resumed normal growth with a ∼3h-delay, as compared to the untreated growth control. Daptomycin treatment yielded a complete eradication of persister cells selected after VAN treatment. Conclusions. Hostile environmental conditions (e.g. high antibiotic bactericidal concentrations) select for persister cells in MRSA biofilm after 24h-treatment in vitro. A staggered treatment vancomycin/daptomycin allows complete biofilm eradication. These results support the use in clinical practice of a therapeutic regimen based on the combined use of antibiotics to kill persisters and eradicate MRSA biofilms. IMC represents a suitable technique to detect persisters and characterize in real-time their reversion to a metabolically-active phenotype


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 63 - 63
1 Dec 2018
Dusane D Peters C Laycock P Aiken S Stoodley P
Full Access

Aim. Carbapenem-resistant Enterobacteriaceae (CRE) and vancomycin resistant Enterococci (VRE) have emerged as multi-drug resistant Gram-negative pathogens associated with Periprosthetic Joint Infections (PJI). In this study, we evaluated the efficacy of antibiotic-loaded calcium sulfate beads (ABLCB) to inhibit bacterial growth, biofilm formation and eradicate preformed biofilms of K. pneumoniae and E. faecalis. Method. Three strains of K. pneumoniae (carbapenem resistant BAA1705, New Delhi metallo-beta-lactamase producing BAA2146 [NDM-1], a carbapenemase producing BAA2524) and a vancomycin resistant strain of E. faecalis (ATCC51299) were used. 4.8mm diameter ABLCBs (Stimulan Rapid Cure, Biocomposites) were loaded with vancomycin (VAN) & gentamicin (GEN) at 500 and 240 mg/10cc pack or VAN & rifampicin (RIF) at 1000 and 600 mg/10cc pack respectively and placed onto tryptic soy agar (TSA) plates spread with each of the four strains independently and incubated for 24 hours at 37°C. The beads were transferred daily onto fresh TSA medium spread with the test cultures. The zone of inhibition was recorded until no inhibition was observed. Biofilm prevention efficacy was investigated in 6 well plates. Bacterial cells (5×10. 5. CFU/mL in tryptic soy broth) were treated with ABLCBs. Media was removed and challenged with bacteria daily for 7 days. CFU counts were taken after 1, 2, 3 and 7 days. For biofilm killing, ABLCB were added to 3 day formed biofilms in 6 well plates. CFU counts were estimated at 1, 3 and 7 days with daily media exchange. Results. ABLCB demonstrated effective initial eluting concentrations depending on the strains. The NDM-1 strain of K. pneumoniae had lower sensitivity than other strains towards VAN & RIF and resistant towards VAN & GEN. E. faecalis was sensitive to both combinations. For repeat challenges, ABLCBs prevented colonisation and reduced biofilm formation, except for the NDM-1 strain which grew in the presence of VAN & GEN. Preformed biofilms were more difficult to reduce with antibiotics than in the prevention assay. Biofilm growth was observed at 1 week of contact with ABLCBs, despite negative cultures at earlier time points for K. pneumoniae and E. faecalis. However, there was a significant killing (2–3 logs, P<0.05) of biofilm bacteria with all antibiotic combinations compared to unloaded beads. Conclusions. This study provides evidence that local release of antibiotics from ABLCBs may be useful in the treatment of multidrug resistant strains of K. pneumoniae and E. faecalis (CRE and VRE) associated with PJIs. In-vitro results do not necessarily correlate to clinical results


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 65 - 65
1 Dec 2018
Tkhilaishvili T Di Luca M Trampuz A
Full Access

Aim. Staphylococcus aureus and Pseudomonas aeruginosa are ubiquitous pathogens often found together in polymicrobial, biofilm-associated infections. The mixed-species biofilm are significantly more resistant to antimicrobial treatment and are associated with failures. Bacteriophages present a promising alternative to treat biofilm-related infections due to their rapid bactericidal activity on multi-drug resistant bacteria. In this study, we assess the simultaneous or sequential application of phages and ciprofloxacin on the mixed-species biofilm in vitro. Method. Ciprofloxacin was tested alone and in combination with Pyo-bacteriophage cocktail against P.aeurginosa ATCC 27853 and MRSA ATCC 43300 mixed-species biofilm. In order to evaluate the effect of combined treatment on biofilm-embedded cells, mature biofilms were grown on porous glass beads with MRSA (10. 6. CFU/ml) and P.aeruginosa (10. 3. CFU/ml) and incubated for 24h at 37° C in LB broth. The beads were then washed and placed in fresh LB in the presence of sub-eradicating titers/concentrations of phages and ciprofloxacin (corresponding to 1/4, 1/8, 1/16, 1/32, 1/64, 1/128 × MBEC. biofilm. ), respectively, simultaneous or in order (pretreated with phages for 3-6-12-24 hours) at 37°C. In all cases, heat flow produced by the viable cells still embedded in the biofilm was measured for 48 hours by isothermal microcalorimetry. Results. Simultaneous or sequential treatment with pyo-bacteriophage (10. 5. and 10. 6. PFU/ml) and ciprofloxacin, producing a synergistic effect resulting in the complete eradication of the biofilm was evaluated. When sub-eradicating concentrations of ciprofloxacin together with sub-eradicating titers of phages simultaneously used to treat mixed-species biofilm, a delay and/or reduction of heat flow produced by bacteria was observed. The same effect was seen when mix-biofilm was pre-treated with phages for 3 hours and 24 hours, respectively. However, antibiotic introduction after 6 and 12 hours resulted in a high synergistic eradicating effect with pyo-bacteriophage. The concentration of ciprofloxacin decreased dramatically from >512 μg/ml to < 16 μg/ml. Conclusions. While MBEC of ciprofloxacin against mixed-species biofilm of Pseudomonas aeruginosa and Staphylococcus aureus was above drug concentrations reachable in clinical practice, the co-administration with bacteriophage strongly reduced the antibiotic doses needed to eradicate biofilm. There is a specific time delay in antibiotic introduction to reach the eradication of mix-species biofilm. These results have implications for optimal combined treatment approaches


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 64 - 64
1 Dec 2017
Ravn C Ferreira IS Maiolo E Overgaard S Trampuz A
Full Access

Aim. The primary aim of this in vitro study was to test the efficacy of daptomycin to eradicate staphylococcal biofilms on various orthopedic implant surfaces and materials. The secondary aim was to quantitatively estimate the formation of staphylococcal biofilm on various implant materials with different surface properties. Method. We tested six clinically important biomaterials: cobalt chrome alloy, pure titanium, grid-blasted titanium, porous plasma-coated titanium with/without hydroxyapatite, and polyethylene. Two laboratory strains of bacteria commonly causing PJI were used, namely Staphylococcus aureus* and Staphylococcus epidermidis*. After overnight incubation with biofilm formation, the test samples were washed and individually exposed to increasing daptomycin concentrations (4–256 mg/l) during 24-hours. Samples were subsequently sonicated in order to detect dislodged biofilm bacteria on blood agar plates by viable growth and transferred to a microcalorimeter*** for real-time measurement of growth related heat flow during 24-h incubation. Minimal biofilm eradication concentration (MBEC) was determined as the lowest concentration of antibiotic required to eradicate the biofilm bacteria on the sample. The time to detection expressed as the heat flow >50 µW (TTD-50) indirectly quantifies the initial amount of biofilm bacteria, with a shorter TTD-50 representing a larger amount of bacteria. Results. MBEC of S. aureus biofilm on smooth metallic surfaces (median 6 mg/l, range 4–8 mg/l) was significantly lower than the rough/porous metallic surfaces (median 128 mg/l, range 32–256 mg/l; p<0.001). Variations of MBEC in experiments with S. epidermidis biofilms on test samples with smooth or rough/porous surface was found non-significant (p=0.25). Mean TTD-50 (±SD) of S. aureus biofilms on rough/porous metallic samples (2.3 ±1.1 hours) was significantly lower than smooth metallic samples (6.7 ±0.4 hours, p<0.001) and polyethylene (5.3 ±0.5 hours, p<0.001). Mean TTD-50 with S. epidermidis biofilm on smooth metals (3.9 ± 1.0 hours) was also significantly higher than their rough/porous counterparts (2.0 ± 1.0 hours, p=0.010). Conclusions. Growth of biofilm bacteria on orthopedic materials are variably influenced by exposure to the potent antimicrobial effect of high-dose daptomycin. In this study, the main factor decisively influencing biofilm quantity and daptomycin susceptibility of staphylococcal biofilms was the irregular surface topography. * ATCC® 29213™. ** ATCC® 35984™. *** TAM III


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 144 - 144
1 May 2016
Galasso O Balato G Catania M Gasparini G Mariconda M
Full Access

Introduction. The use of antibiotic-loaded polymethylmethacrylate bone-cement spacers during two-stage exchange procedures is the standard in the treatment of patients with delayed prosthetic joint infection. The real antimicrobial activity of these spacers is unclear because the adherence of bacteria to cement might result in clinical recurrence of infection. The purpose of the study is to evaluate the in vitro formation of Pseudomonas Aeruginosa (PA) and Staphylococcus spp. biofilm on antibiotic-loaded bone cement. Materials and methods. Cement disks (diameter = 6 mm) impregnated with gentamicin and colistin were submerged in bacterial suspensions of Methicillin-resistant Staphylococcus Aureus(MRSA), Staphylococcus epidermidis (SE), and PA. Negative controls (specimen disks without antibiotic) were similarly prepared. Biofilm formation was visualized by confocal scanning laser microscopy (CSLM), after staining the discs with the live/dead BacLight viability stain containing SYTO 9 dye and propidium iodide. Images from five randomly selected areas were acquired for each disc. Sequential optical sections of 2 µm were collected in sequence along the z-axis over the complete thickness of the sample. The resulting stacks of images were analyzed, quantified and rendered into three-dimensional (3D). The biofilm thickness on antibiotic bone cement compared with the controls was automatically evaluated. Results. CSLM showed living bacteria and bacterial biofilm on the surface of all cement disks, either antibiotic-loaded or controls. Mean biofilm thickness on the controls was 29.6 µm for MRSA, 32.3 µm for SE, and 59.7 µm for PA. The 3D rendering showed decrease in the biofilm thickness for all bacterial strains on gentamicin- and colistin-impragnated cement disks as compared with the controls. The incorporation of gentamicin into cement resulted in a 54%, 74%, and 45% reduction in the bacterial biofilm thickness for MRSA, PA and SE, respectively. The use of colistin leaded to a 51 % reduction in the PA biofilm thickness. Conclusion. The bacterial viability and biofilm formation are reduced by adding antibiotics to bone cement but antibiotic-loaded bone cement does not completely inhibit the formation of an infectious biofilm in vitro


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 8 - 8
1 Dec 2017
Tkhilaishvili T Di Luca M Trampuz A Gaudias J
Full Access

Aim. The increase of antimicrobial resistance reduces treatment options for implant-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Bacteriophages present a promising alternative to treat biofilm-related infections due to their rapid bactericidal activity and activity on multi-drug resistant bacteria. In this study, we investigated the synergistic activity of lytic bacteriophage Sb-1 with different antibiotics against MRSA biofilm, using a real-time highly sensitive assay measuring growth-related heat production (microcalorimetry). Methods. Rifampin, fosfomycin, vancomycin and daptomycin were tested alone and in combination with S. aureus specific phage, Sb-1, against MRSA (Staphylococcus aureus*). MRSA biofilm was formed on porous glass beads (Φ 4 mm, pore size 60 µm) and incubated for 24 h at 37° C in BHI. After 3 times washing biofilms were exposed first to different titers of bacteriophages, ranging from 102 to104 plaque-forming unite (pfu)/ml and after 24h treated again with subinhibitory concentration of antibiotics (corresponding to 1/4, 1/8, 1/16, 1/32 × MHICbiofilm). After 24h antibiotic treatment, the presence of biofilm on glass beads was evaluated by isothermal microcalorimetry for 48h. Heat flow (µW) and total heat (J) were measured. Results. MHICs of rifampin, fosfomycin, daptomycin and vancomycin when tested alone were 256 μg/ml, >4096 μg/ml, 128μg/ml and 2048μg/ml, respectively. Synergistic activity against biofilm MRSA was observed when vancomycin was tested at subinhibitory concentrations 512 μg/ml, 256 μg/ml, 128 μg/ml and 64 μg/ml in combination with subinhibitory titers of Sb-1 at 102, 103, 104 pfu/ml. Complete inhibition of heat production was observed only in combination with a higher titer of Sb-1 (104 pfu/ml). High synergistic activities were also observed in the presence of rifampin, fosfomycin and daptomycin. Conclusions. While MHICs of antibiotics against MRSA biofilm were above drug concentrations reachable in clinical practice, the co-administration with bacteriophage Sb-1 strongly reduced the antibiotic doses needed to eradicate MRSA biofilm. The use of bacteriophage and antibiotics in combination represent an effective strategy to treat implant-associated infections


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_16 | Pages 84 - 84
1 Dec 2015
Thomsen T Xu Y Larsen L Lorenzen J
Full Access

Recent evidence suggests that the microbial community, its spatial distribution and activity play an important role in the prolongation of treatment and healing of chronic infections. Standard bacterial cultures often underestimate the microbial diversity present in chronic infections. This lack of growth is often due to a combination of inadequate growth conditions, prior usage of antibiotics and presence of slow-growing, fastidious, anaerobic or unculturable bacteria living in biofilms. Thus, diagnosis of chronic infections is challenged by lack of appropriate sampling strategies and by limitations in microbiological testing methods. The purpose of this study was to improve sampling and diagnosis of prosthetic joint infections (PJI) and chronic wounds, especially considering the biofilm issue. Systematic sampling, sonication of prosthesis and extended culture were applied on patients with chronic wounds and patients with suspected PJIs. Optimized DNA extraction, quantitative PCR, cloning, next generation sequencing and PNA FISH were applied on the different types of specimens for optimized diagnosis. For further investigation of the microbial pathogenesis, in situ transcriptomics and metabolomics were applied. In both chronic wounds and PJIs, molecular techniques detected a larger diversity of microorganisms than culture methods in several patients. Especially in wounds, molecular methods identified more anaerobic pathogens than culture methods. A heterogeneous distribution of bacteria in various specimens from the same patient was evident for both patient groups. In chronic wounds, multiple biopsies from the same ulcer showed large differences in the abundance of S. aureus and P. aeruginosa at different locations. Transcriptomic and metabolomic analyses indicated the important virulence genes and nutrient acquisition mechanisms of Staphylococcus aureus in situ. As an example, diagnosis and treatment of a patient with a chronic biofilm prosthesis infection persisting for 7 years will be presented. Our studies show that diagnosis of chronic biofilm related infections required multiple specimen types, standardized sampling, extended culture and molecular analysis. Our results are useful for improvement of sampling, analysis and treatment in the clinic. It is our ambition to translate studies on bacterial activity into clinical practice in the future